Abstract
Cancer progression is driven by both somatic copy number aberrations (CNAs) and chromatin remodeling, yet little is known about the interplay between these two classes of events in shaping the clonal diversity of cancers. We present Alleloscope, a method for allele-specific copy number estimation that can be applied to single-cell DNA- and/or transposase-accessible chromatin-sequencing (scDNA-seq, ATAC-seq) data, enabling combined analysis of allele-specific copy number and chromatin accessibility. On scDNA-seq data from gastric, colorectal and breast cancer samples, with validation using matched linked-read sequencing, Alleloscope finds pervasive occurrence of highly complex, multiallelic CNAs, in which cells that carry varying allelic configurations adding to the same total copy number coevolve within a tumor. On scATAC-seq from two basal cell carcinoma samples and a gastric cancer cell line, Alleloscope detected multiallelic copy number events and copy-neutral loss-of-heterozygosity, enabling dissection of the contributions of chromosomal instability and chromatin remodeling to tumor evolution.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The patient scDNA-seq and linked-read sequencing data generated for this study are available under dbGAP identifier phs001711. The scATAC-seq dataset is available in the National Institute of Health’s Sequence Read Archive (SRA) repository under accession PRJNA674903. There are no restrictions on data availability or use. The other patient scDNA-seq data were obtained from dbGAP under accession phs001818.v3.p1 (ref. 27) and phs001711 (ref. 12). The cell line scDNA-seq dataset was from the SRA under accession PRJNA498809. The public scATAC-seq data and WES data were obtained from the SRA under accession PRJNA532774 (ref. 25) and PRJNA533341 (ref. 31).
Code availability
Alleloscope is available on GitHub at https://github.com/seasoncloud/Alleloscope and as a compute capsule on Code Ocean (https://doi.org/10.24433/CO.2295856.v1).
References
Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).
Sandoval, J. & Esteller, M. Cancer epigenomics: beyond genomics. Curr Opin Genet. Dev. 22, 50–55 (2012).
Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).
Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).
Chen, H., Bell, J. M., Zavala, N. A., Ji, H. P. & Zhang, N. R. Allele-specific copy number profiling by next-generation DNA sequencing. Nucleic Acids Res. 43, e23 (2015).
Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26, 64–70 (2015).
Ha, G. et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res. 24, 1881–1893 (2014).
Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44, e131 (2016).
Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).
Zaccaria, S. & Raphael, B. J. Characterizing allele- and haplotype-specific copy numbers in single cells with CHISEL. Nat. Biotechnol. 39, 207–214 (2020).
Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010).
Andor, N. et al. Joint single cell DNA-seq and RNA-seq of gastric cancer cell lines reveals rules of in vitro evolution. NAR Genom. Bioinform. 2, lqaa016 (2020).
Bakker, B. et al. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies. Genome Biol. 17, 115 (2016).
Garvin, T. et al. Interactive analysis and assessment of single-cell copy-number variations. Nat. Methods 12, 1058–1060 (2015).
Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173, 879–893 e813 (2018).
Laks, E. et al. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. Cell 179, 1207–1221 e1222 (2019).
Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).
Velazquez-Villarreal, E. I. et al. Single-cell sequencing of genomic DNA resolves sub-clonal heterogeneity in a melanoma cell line. Commun. Biol. 3, 318 (2020).
Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. Science 362, eaav1898 (2018).
Granja, J. M. et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol. 37, 1458–1465 (2019).
Litzenburger, U. M. et al. Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol. 18, 15 (2017).
Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).
Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
Sathe, A. et al. The cellular genomic diversity, regulatory states and networking of the metastatic colorectal cancer microenvironment. Preprint at bioRxiv https://doi.org/10.1101/2020.09.01.273672 (2020).
Bell, J. M. et al. Chromosome-scale mega-haplotypes enable digital karyotyping of cancer aneuploidy. Nucleic Acids Res. 45, e162 (2017).
Greer, S. U. et al. Linked read sequencing resolves complex genomic rearrangements in gastric cancer metastases. Genome Med. 9, 57 (2017).
Zheng, G. X. et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 34, 303–311 (2016).
Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).
Yu, J. et al. REC8 functions as a tumor suppressor and is epigenetically downregulated in gastric cancer, especially in EBV-positive subtype. Oncogene 36, 182–193 (2017).
McFarlane, R. J. & Wakeman, J. A. Meiosis-like functions in oncogenesis: a new view of cancer. Cancer Res. 77, 5712–5716 (2017).
Aqeilan, R. I. et al. Loss of WWOX expression in gastric carcinoma. Clin. Cancer Res. 10, 3053–3058 (2004).
Baryla, I., Styczen-Binkowska, E. & Bednarek, A. K. Alteration of WWOX in human cancer: a clinical view. Exp. Biol. Med. 240, 305–314 (2015).
Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020).
Luo, C. et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357, 600–604 (2017).
Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018).
Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. High throughput error corrected Nanopore single cell transcriptome sequencing. Nat. Commun. 11, 4025 (2020).
Singh, M. et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun. 10, 3120 (2019).
Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat. Methods 17, 11–14 (2020).
Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at BioRxiv, 201178 (2018).
Benjamin, D. et al. Calling somatic SNVs and indels with mutect2. Preprint at bioRxiv https://doi.org/10.1101/861054 (2019).
Wang, R., Lin, D. Y. & Jiang, Y. SCOPE: a normalization and copy-number estimation method for single-cell DNA sequencing. Cell Syst. 10, 445–452 e446 (2020).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
McKenna, A. et al. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).
Yu, W., Uzun, Y., Zhu, Q., Chen, C. & Tan, K. scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data. Genome Biol. 21, 94 (2020).
Acknowledgements
The work is supported by the National Institutes of Health (grant nos. P01HG00205ESH to B.T.L., S.M.G. and H.P.J., 5R01-HG006137-07 and 1U2CCA233285-01 to C-Y.W. and to N.R.Z., 1R35HG011292-01 to B.T.L.). Additional support to H.P.J. came from the Research Scholar grant no. RSG-13-297-01-TBG from the American Cancer Society, Clayville Foundation and the Gastric Cancer Foundation. Additional support to N.R.Z. came from 1R01GM125301-01, 1P01CA210944-01 and The Mark Foundation for Cancer Research.
Author information
Authors and Affiliations
Contributions
C.-Y.W. and N.R.Z. conceived the computational methods and designed the study with help from H.P.J. C.-Y.W. developed and implemented the computational methods and conducted all data analyses. B.T.L. helped with data interpretation. B.T.L., H.S.K. and A.S. performed all related sample preparation and sequencing. S.M.G. performed data preprocessing and coordinated data transfer. H.P.J. advised all experiments and data collection. C.-Y.W., N.R.Z. and H.P.J. wrote the paper. All authors read and approved the final draft.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Biotechnology thanks Stephen Chanock and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–18, Tables 1, 2 and 4, Results and Methods.
Rights and permissions
About this article
Cite this article
Wu, CY., Lau, B.T., Kim, H.S. et al. Integrative single-cell analysis of allele-specific copy number alterations and chromatin accessibility in cancer. Nat Biotechnol 39, 1259–1269 (2021). https://doi.org/10.1038/s41587-021-00911-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41587-021-00911-w
This article is cited by
-
Mosaic loss of Y chromosome is associated with aging and epithelial injury in chronic kidney disease
Genome Biology (2024)
-
TMEM65 promotes gastric tumorigenesis by targeting YWHAZ to activate PI3K-Akt-mTOR pathway and is a therapeutic target
Oncogene (2024)
-
Fast and flexible profiling of chromatin accessibility and total RNA expression in single nuclei using Microwell-seq3
Cell Discovery (2024)
-
Computational immunogenomic approaches to predict response to cancer immunotherapies
Nature Reviews Clinical Oncology (2024)
-
Mapping recurrent mosaic copy number variation in human neurons
Nature Communications (2024)