Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial tissue profiling by imaging-free molecular tomography


Several techniques are currently being developed for spatially resolved omics profiling, but each new method requires the setup of specific detection strategies or specialized instrumentation. Here we describe an imaging-free framework to localize high-throughput readouts within a tissue by cutting the sample into thin strips in a way that allows subsequent image reconstruction. We implemented this framework to transform a low-input RNA sequencing protocol into an imaging-free spatial transcriptomics technique (called STRP-seq) and validated it by profiling the spatial transcriptome of the mouse brain. We applied the technique to the brain of the Australian bearded dragon, Pogona vitticeps. Our results reveal the molecular anatomy of the telencephalon of this lizard, providing evidence for a marked regionalization of the reptilian pallium and subpallium. We expect that STRP-seq can be used to derive spatially resolved data from a range of other omics techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling and reconstruction approach to resolve the spatial localization of genomics data.
Fig. 2: Reconstruction performance of Tomographer on simulated data.
Fig. 3: STRP-seq reconstructions of spatial expression profiles for the mouse brain.
Fig. 4: Reconstruction of the molecular anatomy of the lizard brain de novo.
Fig. 5: Identification of regional identities in the lizard brain.

Similar content being viewed by others

Data availability

RNA-seq data are available at the Gene Expression Omnibus repository ( under accession GSE152989. Results of the reconstruction can be accessed at this paper’s companion website:

Code availability

Source code and templates for customized 3D-printable cryosectioning adaptor manifolds are available at


  1. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Goldman, S. L. et al. The impact of heterogeneity on single-cell sequencing. Front. Genet. 10, 1–8 (2019).

    Article  CAS  Google Scholar 

  3. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 1–12 (2017).

    Article  CAS  Google Scholar 

  4. Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Linnarsson, S. & Teichmann, S. A. Single-cell genomics: coming of age. Genome Biol. 17, 16–18 (2016).

    Article  CAS  Google Scholar 

  6. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. E. Berglund et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat. Commun. 9, 2419 (2018).

  8. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, 1360–1363 (2015).

    Article  Google Scholar 

  9. Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G. C. Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nat. Biotechnol. 36, 1183–1190 (2018).

    Article  CAS  Google Scholar 

  10. Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Eng, C. H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salmén, F. et al. Barcoded solid-phase RNA capture for spatial transcriptomics profiling in mammalian tissue sections. Nat. Protoc. 13, 2501–2534 (2018).

    Article  PubMed  CAS  Google Scholar 

  15. Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, G., Moffitt, J. R. & Zhuang, X. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep. 8, 1–13 (2018).

    Google Scholar 

  18. Zechel, S., Zajac, P., Lönnerberg, P., Ibáñez, C. F. & Linnarsson, S. Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq. Genome Biol. 15, 486 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Junker, J. P. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662–675 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Kruse, F., Junker, J. P., van Oudenaarden, A. & Bakkers, J. Tomo-seq: a method to obtain genome-wide expression data with spatial resolution. Methods Cell Biol. 135, 299–307 (2016).

  22. Ebbing, A. et al. Spatial transcriptomics of C. elegans males and hermaphrodites identifies sex-specific differences in gene expression patterns. Dev. Cell 47, 801–813 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Lacraz, G. P. A. et al. Tomo-seq identifies SOX9 as a key regulator of cardiac fibrosis during ischemic injury. Circulation 136, 1396–1409 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, C. C. et al. Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration. Dev. Cell 36, 36–49 (2016).

    Article  PubMed  CAS  Google Scholar 

  25. Kaya, I. et al. Spatial lipidomics reveals region and long chain base specific accumulations of monosialogangliosides in amyloid plaques in familial Alzheimer’s disease mice (5xFAD) brain. ACS Chem. Neurosci. 11, 14–24 (2020). Jan.

    Article  CAS  PubMed  Google Scholar 

  26. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019). May.

    Article  CAS  PubMed  Google Scholar 

  27. Donoho, D. L. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

    Article  Google Scholar 

  28. Cierniak, R. & Cierniak, R. Reconstruction from parallel-beam projections. In: X-Ray Computed Tomography in Biomedical Engineering 83–125 (Springer, 2011).

  29. Herman, G. T. & Naparstek, A. Fast image reconstruction based on a radon inversion formula appropriate for rapidly collected data. SIAM J. Appl. Math. 33, 511–533 (1977).

    Article  Google Scholar 

  30. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). Oct.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grün, D., Kester, L. & Van, A. Oudenaarden, validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).

    Article  PubMed  CAS  Google Scholar 

  33. Tomassy, G. S. et al. Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proc. Natl Acad. Sci. USA 107, 3576–3581 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weed, N. et al. Identification of genetic markers for cortical areas using a random forest classification routine and the Allen Mouse Brain Atlas. PLoS ONE 14, e0212898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hawrylycz, M. et al. Areal and laminar differentiation in the mouse neocortex using large scale gene expression data. Methods 50, 113–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Van Waes, V., Tseng, K. Y. & Steiner, H. GPR88: a putative signaling molecule predominantly expressed in the striatum: cellular localization and developmental regulation. Basal Ganglia 1, 83–89 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lipiec, M. A. et al. TCF7L2 regulates postmitotic differentiation programmes and excitability patterns in the thalamus. Development 147, dev190181 (2020).

  38. Gainer, H. Cell-specific gene expression in oxytocin and vasopressin magnocellular neurons. In: Zingg, H. H., Bourque, C. W. & Bichet, D. G. (eds) Vasopressin and Oxytocin. Advances in Experimental Medicine and Biology 15–27 (Springer, 1989).

  39. Tanaka, K. F., Samuels, B. A. & Hen, R. Serotonin receptor expression along the dorsal−ventral axis of mouse hippocampus. Philos. Trans. R. Soc. B Biol. Sci. 367, 2395–2401 (2012).

    Article  CAS  Google Scholar 

  40. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Hoops, D. et al. A 3D MRI-based atlas of a lizard brain. J. Comp. Neurol. 526, 2511–2547 (2018).

  42. Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360, 881–888 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Georges, A. et al. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. Gigascience 4, 45 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Norimoto, H. et al. A claustrum in reptiles and its role in slow-wave sleep. Nature 578, 413–418 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Tsafrir, D., Tsafrir, I., Zuk, O., Notterman, D. A. & Domany, E. Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices. Bioinformatics 21, 2301–2308 (2005).

  46. Virolainen, S.-M., Achim, K., Peltopuro, P., Salminen, M. & Partanen, J. Transcriptional regulatory mechanisms underlying the GABAergic neuron fate in different diencephalic prosomeres. Development 139, 3795–3805 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Bell, S. et al. Disruption of GRIN2B impairs differentiation in human neurons. Stem Cell Rep. 11, 183–196 (2018).

    Article  CAS  Google Scholar 

  48. Garcia-Sevilla, J. A., Magnusson, T., Carlsson, A., Leban, J. & Folkers, K. Neurotensin and its amide analogue [Gln4]-neurotensin: effects on brain monoamine turnover. Naunyn Schmiedebergs Arch. Pharmacol. 305, 213–218 (1978).

    Article  CAS  PubMed  Google Scholar 

  49. Kuenzel, W. J., Medina, L., Csillag, A., Perkel, D. J. & Reiner, A. The avian subpallium: new insights into structural and functional subdivisions occupying the lateral subpallial wall and their embryological origins. Brain Res. 1424, 67–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaas, J. Evolution of Nervous Systems (Elsevier, 2016).

  51. Wang, Q. et al. Organization of the connections between claustrum and cortex in the mouse. J. Comp. Neurol. 525, 1317–1346 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Striedter, G. F. Evolution of the hippocampus in reptiles and birds. J. Comp. Neurol. 524, 496–517 (2016).

    Article  PubMed  Google Scholar 

  53. Cembrowski, M. S., Wang, L., Sugino, K., Shields, B. C. & Spruston, N. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 5, e14997 (2016).

  54. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuchment, P. The Radon Transform and Medical Imaging (Society for Industrial and Applied Mathematics, 2013).

    Book  Google Scholar 

  56. Okamura-Oho, Y. et al., Transcriptome tomography for brain analysis in the web-accessible anatomical space. PLoS ONE 7, e45373 (2012).

  57. ten Donkelaar, H. J. & de Boer-van Huizen, R. Brain stem afferents to the anterior dorsal ventricular ridge in a lizard (Varanus exanthematicus). Anat. Embryol. 177, 465–475 (1988).

    Article  Google Scholar 

  58. Vinciotti, V. et al. A differentiable alternative to the lasso penalty. Preprint at (2016).

Download references


We thank S. Linnarsson (Karolinska Insitutet) for allowing proof-of-principle tests in his laboratory; N. Shental, B. Shalem (Open University Israel) and A. Zeisel (Technion) for stimulating discussions; M. Schuelke (Charité) for enabling the participation of C.G.S. in this project; G. Laurent for discussion and providing samples; M. Weigert and L. Talamanca for discussing our formulation; A. Jacobi for contributing lizard in situ hybridizations; and P. Gönczy, B. Deplanke and F. Naef for constructive criticism of the manuscript. This work was supported by a grant from the Swiss National Science Foundation (CRSK-3_190495) to G.L.M. G.L.M. was also supported by CZI seed network grant HCA3-0000000081 and Swiss National Science Foundation grant PZ00P3_193445.

Author information

Authors and Affiliations



G.L.M. conceived the study design and supervised the project. G.L.M., H.H.S. and C.G.S. analyzed, annotated and interpreted the tomography data and wrote the manuscript. M.A.T. and T.M.Y. performed P. vitticeps experiments and contributed to interpreting the results. G.L.M., A.R. and H.H.S. designed and wrote the reconstruction algorithm. S.C. and L.E.B. designed the cryosectioning scheme. S.C. and J.S. performed the mouse experiments and sectioning. G.L.M. performed the sequencing. P.L. ran the bioinformatics pipeline. F.P.A.D. built the companion website. All authors critically reviewed the manuscript and approved the final version.

Corresponding author

Correspondence to Gioele La Manno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biotechnology thanks Mor Nitzan, Dominic Grun, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schede, H.H., Schneider, C.G., Stergiadou, J. et al. Spatial tissue profiling by imaging-free molecular tomography. Nat Biotechnol 39, 968–977 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing