Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology

Abstract

Circulating tumor DNA (ctDNA) sequencing is being rapidly adopted in precision oncology, but the accuracy, sensitivity and reproducibility of ctDNA assays is poorly understood. Here we report the findings of a multi-site, cross-platform evaluation of the analytical performance of five industry-leading ctDNA assays. We evaluated each stage of the ctDNA sequencing workflow with simulations, synthetic DNA spike-in experiments and proficiency testing on standardized, cell-line-derived reference samples. Above 0.5% variant allele frequency, ctDNA mutations were detected with high sensitivity, precision and reproducibility by all five assays, whereas, below this limit, detection became unreliable and varied widely between assays, especially when input material was limited. Missed mutations (false negatives) were more common than erroneous candidates (false positives), indicating that the reliable sampling of rare ctDNA fragments is the key challenge for ctDNA assays. This comprehensive evaluation of the analytical performance of ctDNA assays serves to inform best practice guidelines and provides a resource for precision oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evaluating ctDNA assays with simulated sequencing data.
Fig. 2: Evaluating ctDNA assays with sequins.
Fig. 3: Structure of cross-platform ctDNA sequencing proficiency study.
Fig. 4: Comparison of performance between hybrid capture ctDNA assays at 25 ng input.
Fig. 5: Effect of cell-free DNA input quantity (Lbx-low) on hybrid capture ctDNA assay performance.
Fig. 6: Evaluation of TFS amplicon sequencing assay.

Similar content being viewed by others

Data availability

Descriptive data about individual ctDNA assays are provided in Supplementary Data 2. Descriptive data about individual variants, including their detection status in each ctDNA assay, are provided in variant classification tables within the Source Data Excel file. These tables were used to generate variant detection heat maps and other data plots. Raw sequencing data have been deposited to the National Center of Biotechnology Information Bioproject PRJNA677999. Variant calls generated by each assay vendor (in VCF format) and panel region files (in BED format) can be accessed at the following link: https://figshare.com/projects/SEQC2_Onco-panel_Sequencing_Working_Group_-_Liquid_Biopsy_Study/94523. Source data are provided with this paper.

Code availability

Variant call sets for each ctfDNA sequencing assay were generated by internal bioinformatics pipelines by each assay vendor. Although these pipelines are not open source, detailed descriptions and relevant software version numbers are provided in the Supplementary Methods. All data plots were generated using R (v3.5 or later) or GraphPad Prism (v8).

References

  1. Leon, S. A., Shapiro, B., Sklaroff, D. M. & Yaros, M. J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 37, 646–650 (1977).

    CAS  PubMed  Google Scholar 

  2. Stroun, M., Anker, P., Lyautey, J., Lederrey, C. & Maurice, P. A. Isolation and characterization of DNA from the plasma of cancer patients. Eur. J. Cancer Clin. Oncol. 23, 707–712 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra24 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Abbosh, C., Birkbak, N. J. & Swanton, C. Early stage NSCLC - challenges to implementing ctDNA-based screening and MRD detection. Nat. Rev. Clin. Oncol. 15, 577–586 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Aggarwal, C. et al. Strategies for the successful implementation of plasma-based NSCLC genotyping in clinical practice. Nat. Rev. Clin. Oncol. 18, 56–62 (2020).

  7. Aravanis, A. M., Lee, M. & Klausner, R. D. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell 168, 571–574 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Wan, J. C. M. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Volckmar, A.-L. et al. A field guide for cancer diagnostics using cell-free DNA: from principles to practice and clinical applications. Genes Chromosomes Cancer 57, 123–139 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome Biol. 14, R51 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brannon, A. R. et al. Enhanced specificity of high sensitivity somatic variant profiling in cell-free DNA via paired normal sequencing: design, validation, and clinical experience of the MSK-ACCESS liquid biopsy assay. Preprint at bioRxiv https://doi.org/10.1101/2020.06.27.175471 (2020).

  13. Clark, T. A. et al. Analytical validation of a hybrid capture-based next-generation sequencing clinical assay for genomic profiling of cell-free circulating tumor DNA. J. Mol. Diagn. 20, 686–702 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dawson, S.-J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra68 (2012).

    Article  PubMed  CAS  Google Scholar 

  16. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 9530–9535 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klein, E. A. et al. Development of a comprehensive cell-free DNA (cfDNA) assay for early detection of multiple tumor types: the Circulating Cell-free Genome Atlas (CCGA) study. J. Clin. Oncol. 36, 12021–12021 (2018).

    Article  Google Scholar 

  18. Miller, A. M. et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 565, 654–658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Murtaza, M. et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat. Commun. 6, 8760 (2015).

    Article  PubMed  CAS  Google Scholar 

  21. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Odegaard, J. I. et al. Validation of a plasma-based comprehensive cancer genotyping assay utilizing orthogonal tissue- and plasma-based methodologies. Clin. Cancer Res. 24, 3539 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Plagnol, V. et al. Analytical validation of a next generation sequencing liquid biopsy assay for high sensitivity broad molecular profiling. PLoS ONE 13, e0193802 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kuderer, N. M. et al. Comparison of 2 commercially available next-generation sequencing platforms in oncology. JAMA Oncol. 3, 996–998 (2017).

    Article  PubMed  Google Scholar 

  26. Stetson, D. et al. Orthogonal comparison of four plasma NGS tests with tumor suggests technical factors are a major source of assay discordance. JCO Precis. Oncol. https://doi.org/10.1200/PO.18.00191 (2019).

  27. Torga, G. & Pienta, K. J. Patient-paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncol. 4, 868–870 (2018).

    Article  PubMed  Google Scholar 

  28. Merker, J. D. et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J. Clin. Oncol. 36, 1631–1641 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Shiraishi, Y. et al. A comprehensive characterization of cis-acting splicing-associated variants in human cancer. Genome Res. 28, 1111–1125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bos, J. L. The ras gene family and human carcinogenesis. Mutat. Res. 195, 255–271 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Blackburn, J. et al. Use of synthetic DNA spike-in controls (sequins) for human genome sequencing. Nat. Protoc. 14, 2119–2151 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Deveson, I. W. et al. Chiral DNA sequences as commutable controls for clinical genomics. Nat. Commun. 10, 1342 (2019).

  33. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Jones, W. et al. A verified genomic reference sample for assessing performance of cancer panels detecting small variants of low allele frequency. Genome Biol. https://doi.org/10.1186/s13059-021-02316-z (2021).

  35. Fu, G. K., Hu, J., Wang, P.-H. & Fodor, S. P. A. Counting individual DNA molecules by the stochastic attachment of diverse labels. Proc. Natl Acad. Sci. USA 108, 9026–9031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10, e0118432 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hardwick, S. A., Deveson, I. W. & Mercer, T. R. Reference standards for next-generation sequencing. Nat. Rev. Genet. 18, 473–484 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sheridan, C. Investors keep the faith in cancer liquid biopsies. Nat. Biotechnol. 37, 972–974 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Lanman, R. B. et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS ONE 10, e0140712 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 9, eaan2415 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl. Med. 8, 346ra92 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 10, eaat4921 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Underhill, H. R. et al. Fragment length of circulating tumor DNA. PLoS Genet. 12, e1006162 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Shen, S. Y. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, Y.-W. et al. Monitoring circulating tumor DNA by analyzing personalized cancer-specific rearrangements to detect recurrence in gastric cancer. Exp. Mol. Med. 51, 1–10 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Klega, K. et al. Detection of somatic structural variants enables quantification and characterization of circulating tumor DNA in children with solid tumors. JCO Precis. Oncol. 2018, PO.17.00285 (2018).

  50. Peng, H. et al. CNV detection from circulating tumor DNA in late stage non-small cell lung cancer patients. Genes (Basel) 10, 926 (2019).

    Article  CAS  Google Scholar 

  51. Cai, Z. et al. Detection of microsatellite instability from circulating tumor DNA by targeted deep sequencing. J. Mol. Diagn. 22, 860–870 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Hu, Y. et al. False-positive plasma genotyping due to clonal hematopoiesis. Clin. Cancer Res. 24, 4437–4443 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All SEQC2 participants freely donated their time, reagents and computing resources for the completion and analysis of this project. We thank our expert colleague, S.-J. Dawson, for providing useful feedback during manuscript preparation. We acknowledge the following funding sources: NHMRC grants APP1108254 and APP1114016 (to T.R.M.), BAA grant HHSF223201510172C (to D.J.), Shanghai Municipal Science and Technology Major Project grant 2017SHZDZX01 (to L.S.), the National Natural Science Foundation of China grant 31720103909 (to L.S.), MRFF grant MRF1173594, Cancer Institute NSW Early Career Fellowship 2018/ECF013 and philanthropic support from the Kinghorn Foundation (to I.W.D.). The contents of the published materials are solely the responsibility of the administering institution, a participating institution or individual authors, and they do not reflect the views of any funding body listed above. This research includes contributions from, and was reviewed by, the FDA and the NIH. This work has been approved for publication by these agencies, but it does not necessarily reflect official agency policy. Certain commercial materials and equipment are identified to adequately specify experimental procedures. In no case does such identification imply recommendation or endorsement by the FDA or the NIH, nor does it imply that the items identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

W.T., D.J. and J.X. conceived the project. I.W.D., J.W., W.J., D.J., T.R.M. and J.X. devised the experiments. I.W.D. performed simulated experiments. B.S.M., J.B., I.S., A.B., D.C., J.C., M.H., N.M., P.M., R.S., D.S., L.S., P.S., H.T., L.T., D.T., H.A., H.B., B.B., D.D., A.G., S.G., K.H., C.M., A.R., P.R., R.R., R.S., M.S., P.S., M.S., V.T. and S.V. performed and/or coordinated laboratory experiments. I.W.D. and B.G. performed data analysis. I.W.D. and T.R.M. prepared the figures. I.W.D., D.J., T.R.M. and J.X. prepared the manuscript, with support from all co-authors.

Corresponding authors

Correspondence to Donald J. Johann Jr, Timothy R. Mercer or Joshua Xu.

Ethics declarations

Competing interests

The Garvan Institute of Medical Research has filed patent applications on synthetic controls for genomics.

Additional information

Peer review information Nature Biotechnology thanks Michael Berger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Supplementary Tables 1–6 and Supplementary Methods

Reporting Summary

Supplementary Data 1

Description of synthetic ‘sequin’ mutations

Supplementary Data 2

Summary of variant detection across ctDNA assays

Supplementary Data 3

Extraction yields from synthetic plasma

Source data

Main Figures

Descriptive data about individual variants, including their detection status in each ctDNA assay, are provided in variant classification tables within the Source Data Excel file.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deveson, I.W., Gong, B., Lai, K. et al. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat Biotechnol 39, 1115–1128 (2021). https://doi.org/10.1038/s41587-021-00857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-021-00857-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer