Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells

Abstract

Nine dogs with hemophilia A were treated with adeno-associated viral (AAV) gene therapy and followed for up to 10 years. Administration of AAV8 or AAV9 vectors expressing canine factor VIII (AAV-cFVIII) corrected the FVIII deficiency to 1.9–11.3% of normal FVIII levels. In two of nine dogs, levels of FVIII activity increased gradually starting about 4 years after treatment. None of the dogs showed evidence of tumors or altered liver function. Analysis of integration sites in liver samples from six treated dogs identified 1,741 unique AAV integration events in genomic DNA and expanded cell clones in five dogs, with 44% of the integrations near genes involved in cell growth. All recovered integrated vectors were partially deleted and/or rearranged. Our data suggest that the increase in FVIII protein expression in two dogs may have been due to clonal expansion of cells harboring integrated vectors. These results support the clinical development of liver-directed AAV gene therapy for hemophilia A, while emphasizing the importance of long-term monitoring for potential genotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long-term expression of AAV-cFVIII in dogs with hemophilia A.
Fig. 2: Assessment of liver function after AAV-cFVIII administration.
Fig. 3: Distributions of AAV vector integration sites in the treated dogs.
Fig. 4: Clonal expansion of cells harboring AAV vectors.
Fig. 5: Three examples of clusters of AAV vector integration sites found in the dog genome.

Similar content being viewed by others

Data availability

The raw sequencing data supporting this study are available at the Zenodo data server (https://doi.org/10.5281/zenodo.3666122), while demultiplexed sample reads generated during the analysis are available at the NIH SRA (BioProject ID: PRJNA606282). Source data are provided with this paper.

Code availability

The AAVenger software and analysis software supporting this study are available at the Zenodo data server (https://doi.org/10.5281/zenodo.3666122). Source data are provided with this paper.

References

  1. Rangarajan, S. et al. AAV5-factor VIII gene transfer in severe hemophilia A. N. Engl. J. Med. 377, 2519–2530 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. High, K. A. et al. A phase 1/2 trial of investigational Spk-8011 in hemophilia A demonstrates durable expression and prevention of bleeds. Blood 132, 487 (2018).

    Article  Google Scholar 

  3. Nathwani, A. C. et al. GO-8: preliminary results of a phase I/II dose escalation trial of gene therapy for haemophilia A using a novel human factor VIII variant. Blood 132, 489 (2018).

    Article  Google Scholar 

  4. Pasi, K. J. et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N. Engl. J. Med. 382, 29–40 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, H. et al. Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 108, 107–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Sabatino, D. E. et al. Efficacy and safety of long-term prophylaxis in severe hemophilia A dogs following liver gene therapy using AAV vectors. Mol. Ther. 19, 442–449 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Sarkar, R. et al. Long-term efficacy of adeno-associated virus serotypes 8 and 9 in hemophilia A dogs and mice. Hum. Gene Ther. 17, 427–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Nathwani, A. C. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nathwani, A. C. et al. Adeno-associated mediated gene transfer for hemophilia B: 8 year follow up and impact of removing ‘empty viral particles’ on safety and efficacy gene transfer. Blood 132, 491 (2018).

    Article  Google Scholar 

  10. Nakai, H. et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J. Virol. 75, 6969–6976 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schotanus, B. A., Penning, L. C. & Spee, B. Potential of regenerative medicine techniques in canine hepatology. Vet. Q. 33, 207–216 (2013).

    Article  PubMed  Google Scholar 

  12. Li, H. et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood 117, 3311–3319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakai, H. et al. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J. Virol. 79, 3606–3614 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chandler, R. J. et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J. Clin. Invest. 125, 870–880 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chandler, R. J., Sands, M. S. & Venditti, C. P. Recombinant adeno-associated viral integration and genotoxicity: insights from animal models. Hum. Gene Ther. 28, 314–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong, L. et al. Recombinant adeno-associated virus integration sites in murine liver after ornithine transcarbamylase gene correction. Hum. Gene Ther. 24, 520–525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gil-Farina, I. et al. Recombinant AAV integration is not associated with hepatic genotoxicity in nonhuman primates and patients. Mol. Ther. 24, 1100–1105 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaeppel, C. et al. A largely random AAV integration profile after LPLD gene therapy. Nat. Med. 19, 889–891 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Nault, J.-C. et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47, 1187–1193 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. La Bella, T. et al. Adeno-associated virus in the liver: natural history and consequences in tumour development. Gut 69, 737–747 (2020).

    Article  PubMed  CAS  Google Scholar 

  21. Büning, H. & Schmidt, M. Adeno-associated vector toxicity—to be or not to be? Mol. Ther. 23, 1673–1675 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Logan, G. J. et al. Identification of liver-specific enhancer-promoter activity in the 3′ untranslated region of the wild-type AAV2 genome. Nat. Genet. 49, 1267–1273 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Bell, P. et al. No evidence for tumorigenesis of AAV vectors in a large-scale study in mice. Mol. Ther. 12, 299–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Donsante, A. et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Ther. 8, 1343–1346 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Donsante, A. et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 317, 477 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Walia, J. S. et al. Long-term correction of Sandhoff disease following intravenous delivery of rAAV9 to mouse neonates. Mol. Ther. 23, 414–422 (2016).

    Article  CAS  Google Scholar 

  27. Rosas, L. E. et al. Patterns of scAAV vector insertion associated with oncogenic events in a mouse model for genotoxicity. Mol. Ther. 20, 2098–2110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bell, P. et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol. Ther. 14, 34–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Lozier, J. N. et al. The Chapel hill hemophilia A dog colony exhibits a factor VIII gene inversion. Proc. Natl Acad. Sci. USA 99, 12991–12996 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sabatino, D. E. et al. Recombinant canine B-domain-deleted FVIII exhibits high specific activity and is safe in the canine hemophilia A model. Blood 114, 4562–4565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCormack, W. M. et al. Helper-dependent adenoviral gene therapy mediates long-term correction of the clotting defect in the canine hemophilia A model. J. Thromb. Haemost. 4, 1218–1225 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berntorp, E., Spotts, G., Patrone, L. & Ewenstein, B. M. Advancing personalized care in hemophilia A: ten years’ experience with an advanced category antihemophilic factor prepared using a plasma/albumin-free method. Biologics 8, 115–127 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Center, S. A. Interpretation of liver enzymes. Vet. Clin. North Am. Small Anim. Pract. 37, 297–333 (2007).

    Article  PubMed  Google Scholar 

  34. Galle, P. R. et al. Biology and significance of α-fetoprotein in hepatocellular carcinoma. Liver Int. 39, 2214–2229 (2019).

    Article  PubMed  Google Scholar 

  35. Kitao, S. et al. α-fetoprotein in serum and tumor tissues in dogs with hepatocellular carcinoma. J. Vet. Diagn. Invest. 18, 291–295 (2006).

    Article  PubMed  Google Scholar 

  36. Yamada, T. et al. Serum α-fetoprotein values in dogs with various hepatic diseases. J. Vet. Med. Sci. 61, 657–659 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Berry, C. C. et al. Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics 28, 755–762 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, C. C. et al. Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro. J. Virol. 71, 9231–9247 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gaidano, G., Foà, R. & Dalla-Favera, R. Molecular pathogenesis of chronic lymphocytic leukemia. J. Clin. Invest. 122, 3432–3438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, R. Q. et al. Knockdown of PEBP4 inhibits human glioma cell growth and invasive potential via ERK1/2 signaling pathway. Mol. Carcinog. 58, 135–143 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, D. et al. PEBP4 promoted the growth and migration of cancer cells in pancreatic ductal adenocarcinoma. Tumour Biol. 37, 1699–1705 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Berry, C. C., Ocwieja, K. E., Malani, N. & Bushman, F. D. Comparing DNA integration site clusters with scan statistics. Bioinformatics 30, 1493–1500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cogné, B. et al. NGS library preparation may generate artifactual integration sites of AAV vectors. Nat. Med. 20, 577–578 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. Kao, C.-Y. et al. Incorporation of the factor IX Padua mutation into FIX-Triple improves clotting activity in vitro and in vivo. Thromb. Haemost. 110, 244–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Samulski, R. J., Chang, L. S. & Shenk, T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 3096–3101 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Donne, R., Saroul-Aïnama, M., Cordier, P., Celton-Morizur, S. & Desdouets, C. Polyploidy in liver development, homeostasis and disease. Nat. Rev. Gastroenterol. Hepatol. 17, 391–405 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Kyrle, P. A. et al. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N. Engl. J. Med. 343, 457–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Rietveld, I. M. et al. High levels of coagulation factors and venous thrombosis risk: strongest association for factor VIII and von Willebrand factor. J. Thromb. Haemost. 17, 99–109 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Sadelain, M., Papapetrou, E. P. & Bushman, F. D. Safe harbours for the integration of new DNA in the human genome. Nat. Rev. Cancer 12, 51–58 (2011).

    Article  PubMed  CAS  Google Scholar 

  50. Sherman, A. et al. Portal vein delviery of viral vectors for gene therapy for hemophilia. Methods Mol. Biol. 1114, 413–426 (2014).

  51. Hothorn, T., Hornik, K., van de Wiel, M. & Zeileis, A. Implementing a class of permutation tests: the coin package. J. Stat. Softw. 28, 1–23 (2008).

    Article  Google Scholar 

  52. Sherman, E. et al. INSPIIRED: a pipeline for quantitative analysis of sites of new DNA integration in cellular genomes. Mol. Ther. Methods Clin. Dev. 4, 39–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Berry, C. C. et al. INSPIIRED: quantification and visualization tools for analyzing integration site distributions. Mol. Ther. Methods Clin. Dev. 4, 17–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Pruitt, K. D. et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42, D756–D763 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Sabatino and Bushman laboratories for help and suggestions. We acknowledge the Research Vector Core at the Children’s Hospital of Philadelphia for production of the SC AAV vectors and the Penn Vector Core at the University of Pennsylvania for preparing the TC AAV vectors. We thank M. Keiser for assistance with immunohistochemistry and A. Messer for assisting with the analysis of the canine samples. We also thank N. Hoepp for discussions on canine liver clinical pathology. We thank S. Sherrill-Mix for help with statistical analysis. This work was supported by grants from the National Institutes of Health (RO1HL083017 (H.H.K.), R24HL63098 and N0175N92019D00041 (T.C.N.), RO1HL126850 (D.E.S.) and RO1AI082020, RO1CA241762, RO1HL142791 and U19AI149680 (F.D.B)). We also acknowledge support from the Penn Center for AIDS Research (P30AI045008) and the PennCHOP Microbiome Program (F.D.B.).

Author information

Authors and Affiliations

Authors

Contributions

G.N.N., J.K.E., S.K., H.E.R., A.M.R., J.L. and C.W. performed the experiments. E.P.M., C.T.L. and T.C.N. performed the vector administration, sample collection and follow-up with the dogs. C.A.-A. performed the dog liver histopathology analysis. D.E.S., H.H.K., T.C.N. and F.D.B. designed the experiments. D.E.S. and F.D.B. wrote the manuscript.

Corresponding author

Correspondence to Denise E. Sabatino.

Ethics declarations

Competing interests

D.E.S. receives royalties from a licensing agreement with Spark Therapeutics. D.E.S. and G.N.N. are inventors on a patent on FVIII and hemophilia A gene therapy.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Immunohistochemical detection of FVIII in liver after AAV administration.

Immunohistochemical detection of FVIII in the liver from untreated (Hem A) (a) and treated (b,c,d,e,f) hemophilia A dogs. Locations of FVIII production are indicated by the brown stain. Most of the cFVIII staining was pan-lobular in distribution (b,c,d,e) while some areas had what appeared to be small clonal populations of cells that express cFVIII (b,f). Liver sections from multiple lobes were stained in n = 4 independent experiments. Images are representative of each dog. Scale bar representing 50μm applies to all images.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Tables 1–12 and AAV Vector Sequences.

Reporting Summary

Uncropped western blot image for Supplementary Fig. 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, G.N., Everett, J.K., Kafle, S. et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol 39, 47–55 (2021). https://doi.org/10.1038/s41587-020-0741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-020-0741-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research