Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

A novel computational architecture for large-scale genomics

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles and implementation of an MDC architecture.
Fig. 2: Scaling MDC to federated computing.

References

  1. Aronson, S. J. & Rehm, H. L. Nature 526, 336–342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Regev, A. et al. Elife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Theis, T. N. & Philip Wong, H. S. Comput. Sci. Eng. 19, 41–50 (2017).

    Article  Google Scholar 

  4. Stephens, Z. D. et al. PLoS Biol. 13, e1002195 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wagner, A., Regev, A. & Yosef, N. Nat. Biotechnol. 34, 1145–1160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nielsen, R. et al. Nature 541, 302–310 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Molnár-Gábor, F., Lueck, R., Yakneen, S. & Korbel, J. O. Genome Med. 9, 58 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bresniker, K. M., Singhal, S. & Wiliams, R. S. Computer 48, 44–53 (2015).

    Article  Google Scholar 

  9. Gen-Z Consortium. Gen-Z core specification 1.0. https://genzconsortium.org/specification/core-specification-1-0/ (retrieved 16 December 2018).

  10. Gen-Z Consortium. Gen-Z overview. http://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview-V1.pdf (2016).

  11. Lee, C. T. & Amaro, R. E. Comput. Sci. Eng. 20, 18–25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hewlett Packard Enterprise. Fabric-Attached Memory emulation (FAME). https://github.com/FabricAttachedMemory/Emulation (retrieved 5 August 2019).

  13. Hewlett Packard Enterprise. New HPE Pointnext capabilities accelerate transition to memory-driven computing. https://www.hpe.com/us/en/newsroom/press-release/2018/06/new-hpe-pointnext-capabilities-accelerate-transition-to-memory-driven-computing.html (2018).

  14. Hewlett Packard Enterprise. Fabric-Attached Memory. https://github.com/FabricAttachedMemory (retrieved 5 August 2019).

  15. Becker, M. et al. Accelerated genomics data processing using memory-driven computing. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 1850–1855 (IEEE, 2019).

  16. Becker, M. et al. Lect. Notes Comput. Sci. 12151, 328–344 (2020).

    Article  Google Scholar 

  17. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim L. Schultze.

Ethics declarations

Competing interests

H.S., K.B. and S.S are employees of Hewlett Packard Enterprise.

Additional information

Editorial note: This article has been peer reviewed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, M., Schultze, H., Bresniker, K. et al. A novel computational architecture for large-scale genomics. Nat Biotechnol 38, 1239–1241 (2020). https://doi.org/10.1038/s41587-020-0699-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-020-0699-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing