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California shows the way for biosecurity in 
commercial gene synthesis
To the Editor — On 21 January, California 
took a major step to increase biosecurity 
in commercial gene synthesis, introducing 
legislation that requires all scientists 
purchasing gene synthesis products to  
use companies that perform screening  
on customers and the sequences they  
order. If enacted, this legislation would 
make it a competitive advantage for 
companies to take biosecurity seriously. 
Here, we argue that the US federal 
government and other governments  
should emulate California’s actions.

Assembly member Rudy Salas (assembly 
district 32) introduced the legislation, 
which requires not only that customers 
use companies that perform biosecurity 
screening but also that companies offering 
DNA synthesis services in California perform 
sequence screening1. These restrictions 
would make it harder for a potential 
nefarious actor to access genetic material for 
making pathogenic viruses de novo, such as 
smallpox, Ebola or influenza. The de novo 
synthesis of known pathogens, particularly 
small viruses, is listed as one of the most 
pressing biodefense risks by a 2018 report 
from the National Academies of Sciences, 
Engineering and Medicine2.

Many commercial gene synthesis 
companies already voluntarily screen 
customer orders to make sure that they 
are both selling to scientists working in 
regulated research institutions and not 

selling anything that could be potentially 
harmful. In 2010, the US Department 
of Health and Human Services issued 
voluntary guidance for companies, including 
steps to take if there is a sequence or 
customer of concern3.

Because it costs time and money to 
perform biosecurity screening, responsible 
companies that voluntarily take this step 
have until now been at a competitive 
business disadvantage4. The California 
legislation seeks to tackle this by requiring 
that all DNA synthesis companies undertake 
sequence screening, thus leveling the 
playing field. The California legislation also 
has a mechanism for eventually requiring 
screening of smaller gene synthesis products 
than the current Department of Health 
and Human Services guidance calls for, a 
necessary step to keep up with advances in 
biotechnology5.

Of course, there are limits to how much 
California can do by itself, as this legislation 
would apply only to California state funds 
and California gene synthesis companies. 
Although California is a biotech giant, with 
several gene synthesis companies, gene 
synthesis is international, with a global 
market valued at over $200 million in 2017 
and projected growth to over $600 million 
by 2022 worldwide6.

It is time for the US federal government 
and other governments to put in place 
regulations that ensure DNA sequences of 

pathogenic agents do not fall into the wrong 
hands. It is no longer sufficient for voluntary 
participation in guidance to oversee a matter 
of national and international biosecurity. 
Governments around the world should 
follow California’s example by strengthening 
biosecurity rules that require synthetic DNA 
sequence screening. ❐
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The COVID-19 XPRIZE and the need for scalable, 
fast, and widespread testing
To the Editor — The US Food and  
Drug Administration (FDA) Emergency 
Use Authorization (EUA) and Instructions 
for Use (IFU) documents outlining 
the current approved virology tests for 
SARS-CoV-2 are largely unstandardized.  
As such, there remains an urgent need  
for a searchable interface allowing 
exploration of standardized information 
reported in these EUA and IFU documents. 

To gain an improved understanding of  
the current testing landscape and to 
galvanize future test development, we 
present here an online tool (http://www.
resiliencehealth.com/tests) that profiles 
current and emerging virology tests for 
detecting SARS-CoV-2 (Figs. 1 and 2).  
We also call on the research community to 
respond to an open COVID-19 XPRIZE 
competition, OpenCovidScreen, seeking  

to identify cheap, high-quality, scalable 
testing solutions.

As of 27 July 2020, an analysis of the 
FDA data on EUA SARS-CoV-2 virology 
tests reveal a wide range of limit of detection 
(LoD), spanning >5 orders of log10 differences. 
These metrics are of critical importance 
because each 10-fold increase in the LoD of a 
COVID-19 viral diagnostic test is expected to 
increase the false negative rate by 13%1.
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Beyond this variable performance 
reported in IFUs for EUA tests, key 
attributes of many tests, such as primer 
sequences, protocol steps or viral gene 
targets, are either unclear or missing. Also, 
most approved EUAs use large multipliers 
(2- to 200-fold) on their own LoD for 
contrived or clinical samples to pass the 
minimum threshold for approval, based  
on a 95% positive/negative percentage 
agreement across at least 30 positive and  
30 negative samples. As submissions stand, 
it is difficult to directly compare results and 
even understand how a test will actually 
translate into real-world or clinical settings.

Moreover, there has not been an 
independent assessment of these tests’ 
abilities or a comprehensive benchmarking 
of their strengths and weaknesses in 
different clinical settings, nor a consistent 
sample type (for example, nasopharyngeal, 
nasal, saliva) used across the EUAs. Thus, a 
comprehensive benchmarking effort on all 
methods on the market would be helpful, 
similar to ones conducting head-to-head 
studies of serological tests2 and other 
sites that annotate and analyze some of 
these tests, such as FindDx (https://www.
finddx.org/), the US National Institute for 
Standards and Technology (NIST)’s Rapid 
Microbial Testing Methods Consortium 
(https://www.nist.gov/programs-projects/ 
nist-rapid-microbial-testing-methods- 
consortium) and the COVID-19 Testing 
Project (https://covidtestingproject.org/
index.html).

However, even if all current EUA tests 
for the SARS-CoV-2 virus performed with 
>95% sensitivity and >95% specificity, 
their combined capacities would still fall 
short of enabling large-scale, ubiquitous 
temporal monitoring (tens of millions per 
day), involving samples with varying viral 
load and substrates3. Also, tests with a 
higher LoD would not be readily applicable 
to pooling strategies, in which samples are 
by definition diluted before testing. Even 
the lower LoD tests, while promising for 
pooling, have not had independent LoD 
assessments. Moreover, truly city-scale or 
even national-level testing to decrease and 
control infection rates would require fast 
turnaround times (test result in less than 
one day), easy processing, and a low cost 
(per test and capital expense), such that a 
consumer, employer or government body 
could easily pay for multiple tests a week  
for each person.

To address the above issues, we 
have designed the COVID-19 XPRIZE 
competition, OpenCovidScreen (https://
opencovidscreen.org/), to identify 
economically viable, high-quality, scalable 
testing options (Fig. 3). After competitors 
are selected on the basis of their results, 
methods, cost, scalability and speed,  
they will then be sent blinded samples 
to analyze. Results will be uploaded to 
the XPRIZE site and analyzed for overall 
performance, LoD and false positives.  
The finalists, based on their overall  
methods, results and innovation, will  

go into the clinical validation round, in  
which OpenCovidScreen will follow the 
methods laid out by the competitors to 
assess the reproducibility of their results. 
Top teams from this validation round 
will be awarded a prize and selected to 
set up and deploy testing sites, wherein 
OpenCovidScreen will help scale 
their tests and expand them into more 
locations, as well as to coordinate with 
government, industry and non-profit 
efforts (for example, the NIH RADx 
Program and Testing for America; 
https://www.nih.gov/research-training/
medical-research-initiatives/radx).

We invite readers to submit solutions  
for this XPRIZE, which is open to 
participants from all around the world 
(https://xprize.org/testing). This prize can 
serve as a springboard for both new and 
established technologies that can enable 
truly global viral testing and surveillance. 
Successful methods will depend on the 
availability of reagents, resources and 
automation, and as such, these metrics  
will also be used to identify the finalists. 
Winning methods will help regions increase 
testing capabilities by orders of magnitude 
and thus empower schools, businesses and 
cities to rapidly reopen safely, as well as 
pioneer technologies and platforms that can 
be used for future outbreaks. It is crucial to 
deploy rapid, scalable methods capable of 
tracking viruses to mitigate their detrimental 
impacts on society. All are encouraged to 
help in this fight. ❐
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Fig. 1 | cumulative number of eua virology tests approved from February to July 2020. NGS, next-generation sequencing; NAAt, nucleic acid amplification 
test; LFA, lateral flow assay; rt, reverse transcription; ddpCr, Droplet Digital pCr; dpCr, digital pCr; qpCr, quantitative pCr.

Fig. 2 | Performance and targets of different eua virology tests. a, Limit of detection (LoD) for tests that reported copies/μL or copies/mL (presented 
in copies/μL throughout). b, eUA virology test targets. SArS-CoV-2 5′–3′ genome4 on horizontal axis, with tests on the vertical axis and colors indicating 
whether the test has one target (red) or multiple targets (brown) in the specified region. each line indicates a test source (company or institution). If an 
eUA reported different LoDs for different targets, sample types or methods, each is displayed as a separate row. NGS, next-generation sequencing; NAAt, 
nucleic acid amplification test; LFA, lateral flow assay; rt, reverse transcription; ddpCr, Droplet Digital pCr; dpCr, digital pCr; qpCr, quantitative pCr; rDrp, 
rNA-dependent rNA polymerase; DSp, diagnostic sample preparation; Np, nasopharyngeal; Op, oropharyngeal; rrt, real-time reverse transcriptase.
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Fig. 3 | the XPriZe/opencovidScreen competition. the OpenCovidScreen competition is intended 
to identify fast, scalable, and cheap SAr-CoV-2 virology tests through a series of phases, starting with 
submitting test and method information (top), a proficiency test including blinded samples, and a 
clinical validation phase (middle). the top competitors identified on the basis of their methods, results 
and scalability will then be chosen for deployment to enable widespread usage of their tests (bottom).

http://www.nature.com/naturebiotechnology
http://orcid.org/0000-0003-1663-2865
http://orcid.org/0000-0003-3535-2076
http://orcid.org/0000-0002-5299-4700
http://orcid.org/0000-0001-6015-0279
http://orcid.org/0000-0002-1850-1642
mailto:chm2042@med.cornell.edu
https://doi.org/10.1038/s41587-020-0655-4
https://doi.org/10.1101/2020.06.02.131144
https://doi.org/10.1101/2020.06.02.131144
https://doi.org/10.1101/2020.04.25.20074856
https://doi.org/10.1101/2020.04.25.20074856
http://arep.med.harvard.edu/gmc/tech.html
http://arep.med.harvard.edu/gmc/tech.html



