Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct DNA crosslinking with CAP-C uncovers transcription-dependent chromatin organization at high resolution

Abstract

Determining the spatial organization of chromatin in cells mainly relies on crosslinking-based chromosome conformation capture techniques, but resolution and signal-to-noise ratio of these approaches is limited by interference from DNA-bound proteins. Here we introduce chemical-crosslinking assisted proximity capture (CAP-C), a method that uses multifunctional chemical crosslinkers with defined sizes to capture chromatin contacts. CAP-C generates chromatin contact maps at subkilobase (sub-kb) resolution with low background noise. We applied CAP-C to formaldehyde prefixed mouse embryonic stem cells (mESCs) and investigated loop domains (median size of 200 kb) and nonloop domains (median size of 9 kb). Transcription inhibition caused a greater loss of contacts in nonloop domains than loop domains. We uncovered conserved, transcription-state-dependent chromatin compartmentalization at high resolution that is shared from Drosophila to human, and a transcription-initiation-dependent nuclear subcompartment that brings multiple nonloop domains in close proximity. We also showed that CAP-C could be used to detect native chromatin conformation without formaldehyde prefixing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CAP-C resolves high-resolution local chromatin structure.
Fig. 2: CAP-C identifies loop and nonloop domains as two distinct types of chromatin domains.
Fig. 3: Active promoters are involved in chromatin boundary formation.
Fig. 4: Induction of transcription on nonannotated TSS by DNMTi results in the formation of weak chromatin boundaries and compartment changes.
Fig. 5: CAP-C identifies conserved small-scale chromatin compartmentalization shared among species.
Fig. 6: TICs as a type of nuclear subcompartment.

Similar content being viewed by others

Data availability

CAP-C, in situ Hi-C, ChIP–seq and PLAC-seq raw sequencing data are available on Gene Expression Omnibus accession: GSE110061. ChIP–seq data can also be found in the following links on UCSD genome browser: CAP-C–mESC: https://genome.ucsc.edu/s/anton386/CAPC%2DmESC; CAP-C–CTCF-AID: https://genome.ucsc.edu/s/anton386/CAPC%2DCTCF%2DAID; CAP-C–induction: https://genome.ucsc.edu/s/anton386/CAPC%2DInduction. Source data are provided with this paper.

Code availability

Code for CAP-C and ChIP–seq analysis is available on GitHub: http://github.com/ouyang-lab/CAPC.

References

  1. Sexton, T. & Cavalli, G. The role of chromosome domains in shaping the functional genome. Cell. 160, 1049–1059 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Pombo, A. & Dillon, N. Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178. e1120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramani, V. et al. Mapping 3D genome architecture through in situ DNase Hi-C. Nat. Protoc. 11, 2104–2121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maiti, P. K., Çaǧın, T., Wang, G. & Goddard, W. A. Structure of PAMAM dendrimers::generations 1 through 11. Macromol. 37, 6236–6254 (2004).

    Article  CAS  Google Scholar 

  14. Astruc, D., Boisselier, E. & Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110, 1857–1959 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Eichman, B. F. et al. The crystal structures of psoralen cross-linked DNAs: drug-dependent formation of Holliday junctions. J. Mol. Biol. 308, 15–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Liang, Z. et al. BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat. Commun. 8, 1622 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kolb, H. C., Finn, M. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  18. Hnisz, D., Day, D. S. & Young, R. A. Insulated neighborhoods: structural and functional units of mammalian gene control. Cell 167, 1188–1200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 e922 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davuluri, R. V. et al. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 24, 167–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell. 67, 837–852 e837 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rowley, M. J. et al. Condensin II counteracts cohesin and RNA polymerase II in the establishment of 3D chromatin organization. Cell Rep. 26, 2890–2903. e2893 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitchell, J. A. & Fraser, P. Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev. 22, 20–25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Cubeñas-Potts, C. et al. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Nucleic Acids Res. 45, 1714–1730 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  26. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell. 174, 744–757.e724 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fang, R. et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 26, 1345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsieh, T.-H. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell. 78, 539–553.e538 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature. 547, 232–235 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell. 169, 216–228 e219 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell. 171, 557–572 e524 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 58, 318–323 (2018). 1.

    Article  CAS  Google Scholar 

  33. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42, 53 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature. 544, 503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature. 547, 236–240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science. 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature. 572, 543–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kubo, N. et al. Preservation of chromatin organization after acute loss of CTCF in mouse embryonic stem cells. Preprint at bioRxiv https://doi.org/10.1101/118737 (2017).

  39. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Law, C. et al. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res. 5, https://doi.org/10.12688/f1000research.9005.3 (2018).

  41. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997v2 (2013).

  42. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, T. et al. HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient. Genome Res. 27, 1939–1949 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ay, F., Bailey, T. L. & Noble, W. S. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 24, 999–1011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell. 171, 305–320 e324 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. DeMare, L. E. et al. The genomic landscape of cohesin-associated chromatin interactions. Genome Res. 23, 1224–1234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature. 551, 51–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Andersen (Life Science Editors) for editing the manuscript, P.W. Faber for helping with high-throughput sequencing, and J. Fei and J. Zhang for helping with DNA–FISH experiments. This work was supported by grant nos. NIH F32CA221007 (B.T.H.), NIH RM1HG008935 (C.H.), NIH U54CA193419 (C.H.), the Ludwig Institute for Cancer Research (B.R. and C.H.) and NIH/NIGMS grant no. R35 GM124998 (Z.O.). C.H. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.H. and Q.Y. conceived the original idea. Q.Y., A.Y.C., X.G., Z.O. and C.H. designed the experiments. Q.Y., X.G., T.W. and M.Y., performed the experiments, A.Y.C. and B.L. performed analysis of the sequencing data. B.T.H. aided in the analysis of the FISH data. A.Y.C., Q.Y., X.G., B.R., Z.O. and C.H. analyzed the data and interpreted the finding. Q.Y., X.G., B.T.H. and A.Y.C. wrote the manuscript with input from B.R., Z.O. and C.H.

Corresponding authors

Correspondence to Bing Ren, Zhengqing Ouyang or Chuan He.

Ethics declarations

Competing interests

C.H. is a scientific founder and a member of the scientific advisory board of Accent Therapeutics, Inc. and a shareholder of Epican Genetech. B.R. is a co-founder and a member of the scienceitific advisory board of Arima Genomics Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30 and Notes 1–5.

Reporting Summary

Supplementary Table 1

DNA–FISH probes

Supplementary Table 2

The sequencing information of CAP-C and in situ Hi-C

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Q., Cheng, A.Y., Gu, X. et al. Direct DNA crosslinking with CAP-C uncovers transcription-dependent chromatin organization at high resolution. Nat Biotechnol 39, 225–235 (2021). https://doi.org/10.1038/s41587-020-0643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-020-0643-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research