Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineered off-the-shelf therapeutic T cells resist host immune rejection

Abstract

Engineered T cells are effective therapies against a range of malignancies, but current approaches rely on autologous T cells, which are difficult and expensive to manufacture. Efforts to develop potent allogeneic T cells that are not rejected by the recipient’s immune system require abrogating both T- and natural killer (NK)-cell responses, which eliminate foreign cells through various mechanisms. In the present study, we engineered a receptor that mediates deletion of activated host T and NK cells, preventing rejection of allogeneic T cells. Our alloimmune defense receptor (ADR) selectively recognizes 4-1BB, a cell surface receptor temporarily upregulated by activated lymphocytes. ADR-expressing T cells resist cellular rejection by targeting alloreactive lymphocytes in vitro and in vivo, while sparing resting lymphocytes. Cells co-expressing chimeric antigen receptors and ADRs persisted in mice and produced sustained tumor eradication in two mouse models of allogeneic T-cell therapy of hematopoietic and solid cancers. This approach enables generation of rejection-resistant, ‘off-the-shelf’, allogeneic T-cell products to produce long-term therapeutic benefit in immunocompetent recipients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: ADR T cells specific to 4-1BB selectively eliminate activated T and NK cells in vitro.
Fig. 2: ADR protects T cells from T-cell mediated rejection in vitro.
Fig. 3: ADR protects T cells from NK-cell mediated rejection in vitro.
Fig. 4: ADR T cells are protected from allogeneic rejection in vivo.
Fig. 5: T cells co-expressing ADR and CAR retain function of both receptors in vitro.
Fig. 6: CD19 CAR T cells co-expressing ADR resist alloimmune rejection in vivo and retain potent anti-tumor function.

Data availability

All data generated for this manuscript will be made available upon reasonable request to the corresponding author. Source data are provided with this paper.

References

  1. 1.

    June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Papadopoulou, A. et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci. Transl. Med. 6, 242ra83 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor–modified T cells. Sci. Transl. Med. 8, 355ra116–355ra116 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Graham, C. et al. Allogeneic CAR-T cells: more than ease of access? Cells 7, 155 (2018).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  5. 5.

    Torikai, H. et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119, 5697–5705 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).

    PubMed  Article  Google Scholar 

  7. 7.

    Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Poirot, L. et al. Multiplex genome-edited T-cell manufacturing platform for ‘off-the-shelf’ adoptive T-cell immunotherapies. Cancer Res. 75, 3853–3864 (2015).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Tzannou, I. et al. Off-the-shelf virus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, Epstein–Barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J. Clin. Oncol. 35, 3547–3557 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Leen, A. M. et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 121, 5113–5123 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Melenhorst, J. J. et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood 116, 4700–4702 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23, 23–68 (2005).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Elliott, T. J. & Eisen, H. N. Allorecognition of purified major histocompatibility complex glycoproteins by cytotoxic T lymphocytes. Proc. Natl Acad. Sci. USA 85, 2728–2732 (1988).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Ciccone, E. et al. Evidence of a natural killer (NK) cell repertoire for (allo) antigen recognition: definition of five distinct NK-determined allospecificities in humans. J. Exp. Med. 175, 709–718 (1992).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Colonna, M., Brooks, E., Falco, M., Ferrara, G. & Strominger, J. Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. Science 260, 1121–1124 (1993).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Torikai, H. et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122, 1341–1349 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Storkus, W. J., Howell, D. N., Salter, R. D., Dawson, J. R. & Cresswell, P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J. Immunol. 138, 1657–1659 (1987).

    CAS  PubMed  Google Scholar 

  20. 20.

    Brehm, M. A. et al. Lack of acute xenogeneic graft-versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression. FASEB J. 33, 3137–3151 (2019).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Tian, G. et al. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J. Clin. Invest. 126, 2341–2355 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Lamers, C. H. J. et al. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 117, 72–82 (2011).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Maus, M. V. et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res. 1, 26–31 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Sommermeyer, D. et al. Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia 31, 2191–2199 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA 95, 5199–5204 (1998).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Lieto, L. D., Maasho, K., West, D., Borrego, F. & Coligan, J. E. The human CD94 gene encodes multiple, expressible transcripts including a new partner of NKG2A/B. Genes Immun. 7, 36–43 (2006).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Schwarz, H., Valbracht, J., Tuckwell, J., von Kempis, J. & Lotz, M. ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood 85, 1043–1052 (1995).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Zhang, X. et al. CD137 promotes proliferation and survival of human B cells. J. Immunol. 184, 787–795 (2010).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Pauly, S., Broll, K., Wittmann, M., Giegerich, G. & Schwarz, H. CD137 is expressed by follicular dendritic cells and costimulates B lymphocyte activation in germinal centers. J. Leukoc. Biol. 72, 35–42 (2002).

    CAS  PubMed  Google Scholar 

  32. 32.

    Alfaro, C. et al. Functional expression of CD137 (4-1BB) on T helper follicular cells. Oncoimmunology 4, e1054597 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Heinisch, I. V. W. M., Bizer, C., Volgger, W. & Simon, H.-U. Functional CD137 receptors are expressed by eosinophils from patients with IgE-mediated allergic responses but not by eosinophils from patients with non–IgE-mediated eosinophilic disorders. J. Allergy Clin. Immunol. 108, 21–28 (2001).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Nakajima, T. et al. Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcepsilon receptor I cross-linking: an interspecies comparison. Blood 100, 3861–3868 (2002).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Cheuk, S. et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46, 287–300 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Ramos, C. A. et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J. Clin. Invest. 127, 3462–3471 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Ruella, M. et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 24, 1499–1503 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T Cells. Cancer Cell 28, 415–428 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Stephan, M. T. et al. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat. Med. 13, 1440–1449 (2007).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Mamonkin, M. et al. Reversible transgene expression reduces fratricide and permits 4-1BB costimulation of CAR T cells directed to T-cell malignancies. Cancer Immunol. Res. 6, 47–58 (2018).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Mamonkin, M., Rouce, R. H., Tashiro, H. & Brenner, M. K. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 126, 983–992 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Gomes-Silva, D. et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 130, 285–296 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Metelitsa lab for providing the CHLA255-GFP.FFluc cell line; T. Sauer, S. Sharma, N. Mehta in the C. Rooney lab for the K562-CS cell line, LCLs, β2m-specific sgRNA and GD2.BBz CAR construct; P. Castro and the Baylor College of Medicine Pathology & Histology Core for immunohistochemistry and H&E staining of tissue microarray slides; and C. Gillespie for editing the manuscript. This project was supported by the Leukemia and Lymphoma Society Translational Research Award no. 6566, NIH NCI SPORE in Lymphoma 5P50CA126752, SU2C/AACR 604817 Meg Vosburg T cell Lymphoma Dream Team, Gloria Levin Fund and CPRIT Award nos. RP180810 and RP150611. Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research. We also thank the Dan L. Duncan Comprehensive Cancer Center for the support of their shared resources (P30 CA125123).

Author information

Affiliations

Authors

Contributions

F.M. designed and performed experiments, analyzed and interpreted the data, and wrote the manuscript. N.W. and M.K.M. designed and performed experiments and analyzed the data. M.J.H. evaluated the tissue microarray slides. M.S. contributed to vector cloning and in vivo experiments. D.S. established the CD3 gene editing platform. T.S., E.A., P.A.A. and R.M. performed experiments and collected data. D.Q. gave advice on the MLR assay design. H.E.H. advised on the study and edited the manuscript. M.K.B. provided feedback, designed experiments and edited teh manuscript. M.M. conceptualized, directed and funded the study, designed ADR constructs, designed experiments, analyzed and interpreted the data, and wrote the manuscript.

Corresponding author

Correspondence to Maksim Mamonkin.

Ethics declarations

Competing interests

H.E.H. is co-founder with equity: Allovir, Marker Therapeutics; advisory boards: Gilead, Tessa Therapeutics, Novartis, PACT Pharma, Kiadis Pharma; research funding: Tessa Therapeutics, Cell Medica. M.K.B. is co-founder with equity: Allovir, Marker Therapeutics, Tessa Therapeutics; advisory boards: Tessa Therapeutics, Unum, Allogene. D.Q.’s research funding: Tessa Therapeutics. M.M., F.M. and M.K.B. are co-inventors on a patent related to ADRs and methods of their use, licensed to Fate Therapeutics. All other authors report no relevant financial/nonfinancial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 2

Statistical source data for selected panels.

Source Data Fig. 3

Statistical source data for selected panels.

Source Data Fig. 4

Statistical source data for selected panels.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mo, F., Watanabe, N., McKenna, M.K. et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat Biotechnol 39, 56–63 (2021). https://doi.org/10.1038/s41587-020-0601-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing