Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An engineered ScCas9 with broad PAM range and high specificity and activity

A Publisher Correction to this article was published on 19 June 2020

This article has been updated

Abstract

CRISPR enzymes require a protospacer-adjacent motif (PAM) near the target cleavage site, constraining the sequences accessible for editing. In the present study, we combine protein motifs from several orthologs to engineer two variants of Streptococcus canis Cas9—Sc++ and a higher-fidelity mutant HiFi-Sc++—that have simultaneously broad 5′-NNG-3′ PAM compatibility, robust DNA-cleavage activity and minimal off-target activity. Sc++ and HiFi-Sc++ extend the use of CRISPR editing for diverse applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Engineering and characterization of broad PAM recognition by Sc++.
Fig. 2: Broad, efficient and specific genome-editing capabilities of Sc++.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and supplementary tables. All source data can be found at the National Center for Biotechnology Information’s Sequence Read Archive under the accession code PRJNA623032. Nuclease plasmids are available on Addgene.

Change history

  • 19 June 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821 (2012).

  2. 2.

    Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Barrangou, R. & Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2, 17092 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defense system. Microbiology 155, 733–740 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Shah, S. A., Erdmann, S., Mojica, F. J. & Garrett, R. A. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. 10, 891–899 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Jiang, F. et al. RNA complex preorganized for target DNA recognition. Science 384, 1477–1481 (2015).

    Article  Google Scholar 

  8. 8.

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 520, 186–191 (2013).

    Google Scholar 

  13. 13.

    Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Harrington, L. B. et al. A thermostable Cas9 with increased lifetime in human plasma. Nat. Commun. 8, 1424 (2017).

    Article  Google Scholar 

  15. 15.

    Edraki, A. et al. A compact, high accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714–726 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  Google Scholar 

  17. 17.

    Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. Nat. Biotechnol. 35, 789–792 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Ma, D. et al. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nat. Commun. 10, 560 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Kleinstiver, B. P. et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Chatterjee, P., Jakimo, N. & Jacobson, J. M. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 4, eaau0766 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Hua, K., Tao, X., P. Han, P., Wang, R. & Zhu, J. K. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Mol. Plant 12, 1003–1014 (2019).

  24. 24.

    Zhong, Z. et al. Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol. Plant 12, 1027–1036 (2019).

  25. 25.

    Guo, M. et al. Structural insights into a high fidelity variant of SpCas9. Cell Res. 29, 183–192 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. Proc. Natl Acad. Sci. USA 89, 10915–10919 (1992).

    CAS  Article  Google Scholar 

  27. 27.

    Chen, X., Zaro, J. & Shen, W. C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369 (2012).

    Article  Google Scholar 

  28. 28.

    Leenay, R. T. et al. Identifying and visualizing functional pam diversity across CRISPR-Cas systems. Mol. Cell 62, 137–147 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Crooks, G. E. et al. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    Wheeler, T. J., Clements, J. & Finn, R. D. Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinform. 15, 7 (2014).

    Article  Google Scholar 

  31. 31.

    Hsiau, T. et al. Inference of CRISPR edits from Sanger trace data. Preprint at bioRxiv https://doi.org/10.1101/251082 (2019).

  32. 32.

    Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Vakulskas, C. A. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216–1224 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Chen, J. S. et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407–410 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    CAS  Article  Google Scholar 

  36. 36.

    Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481 (2020).

  37. 37.

    Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science, 368, 290–296 (2020).

  38. 38.

    Brinkman, E. K., Chen, T., Amendola, M. & Steensel, B. V. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article  Google Scholar 

  39. 39.

    Rodriguez, T. C., Pratt, H. E., Liu, P., Amrani, N. & Zhu, L. J. GS-preprocess: containerized GUIDE-seq data analysis tools with diverse sequencer compatibility. Preprint at bioRxiv https://doi.org/10.1101/2020.01.26.914861 (2020).

  40. 40.

    Zhu, L. J. et al. GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases. BMC Genomics 18, 379 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Boyden for access to cell culture, in addition to N. Gershenfeld and S. Zhang for shared lab equipment. We further thank A. Hennes and M. Topalli for technical assistance. This work was supported by the consortium of sponsors of the MIT Media Lab and the MIT Center for Bits and Atoms, as well as the CHDI Foundation. GUIDE-seq work was supported by a grant (no. GM115911) to E.J.S. from the US National Institutes of Health.

Author information

Affiliations

Authors

Contributions

P.C. and N.J. conceived the study. P.C. designed constructs, carried out genome-editing experiments, conducted data analyses and wrote the manuscript. J.L., N.A. and T.R. carried out GUIDE-seq experiments and analysis. S.R.T.K. and E.T. assisted in plasmid construction, transfection and sample preparation. R.Q. and S.H. performed protein expression analysis. All authors reviewed and edited the paper. J.M.J. and E.J.S. supervised the project.

Corresponding author

Correspondence to Pranam Chatterjee.

Ethics declarations

Competing interests

P.C., N.J. and J.M.J. are listed as inventors for US Patent Application no. 20190218532: Streptococcus canis Cas9 as a genome engineering platform with novel PAM specificity.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Reporting summary

Supplementary Table 1

SgRNA sequences used in this study, grouped by editing context. Primers used for genomic amplification are also specified.

Supplementary Table 2

Curated dataset of indel formation efficiencies at each site (annotated by target sequence, genomic locus and PAM), for Fig. 2a.

Supplementary Table 3

Information for on- and off- target sites in Fig. 2c, primers used for NGS and summary of raw data used for plotted graphs.

Source data

Source Data Fig. 1

Unprocessed western blot.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, P., Jakimo, N., Lee, J. et al. An engineered ScCas9 with broad PAM range and high specificity and activity. Nat Biotechnol 38, 1154–1158 (2020). https://doi.org/10.1038/s41587-020-0517-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing