The case for biotech on Mars

The stepwise application of biotechnology will be instrumental to addressing four key challenges of Martian settlement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Incremental integration of biotechnology into Mars mission designs.

References

  1. 1.

    Drake, B. Human Exploration of Mars Design Reference Architecture 5.0 Addendum http://www.nasa.gov/pdf/373667main_NASA-SP-2009-566-ADD.pdf (NASA, 2009).

  2. 2.

    Arney, D. C., Klovstad, J. & Jones, C. A. in AIAA SPACE 2016 (American Institute of Aeronautics and Astronautics, 2016); https://doi.org/10.2514/6.2016-5489

  3. 3.

    Osczevski, R. Bull. Am. Meteorol. Soc. 95, 533–541 (2014).

    Article  Google Scholar 

  4. 4.

    Dundas, C. M. et al. Science 359, 199–201 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Orosei, R. et al. Science 361, 490–493 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Meslin, P.-Y. et al. Science 341, 1238670 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  7. 7.

    Llorente, B., Williams, T. C. & Goold, H. D. Genes (Basel) 9, 348 (2018).

    Article  CAS  Google Scholar 

  8. 8.

    Scheer, F. A. J. L., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Kerr, R. A. Science 340, 1031 (2013).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Reddy, V. S. New Space 6, 125–134 (2018).

    Article  Google Scholar 

  11. 11.

    Drexler, E. K. Space development: the case against Mars (Foresight Institute; reprinted from L5 News, October 1984, 1–3) https://foresight.org/nano/Mars.php (undated).

  12. 12.

    Worden, S. in Cool Stars, Stellar Systems, and the Sun: Proceedings of the 7th Cambridge Workshop, ASP Conference Series Vol. 26, 599 (1992).

  13. 13.

    Jones, H. W. Humans to Mars will cost about “half a trillion dollars” and life support roughly two billion dollars. 46th International Conference on Environmental Systems https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20200000973.pdf (2016).

  14. 14.

    Brown, M. Inverse https://www.inverse.com/article/51291-spacex-here-s-the-timeline-for-getting-to-mars-and-starting-a-colony (2019).

  15. 15.

    Thompson, A. Observer https://observer.com/2019/08/spacex-starhopper-mars-travel-colonization-plans/ (2019).

  16. 16.

    Garrett-Bakelman, F. E. et al. Science 364, eaau8650 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Schlacht, I. L. et al. Space Analog Survey: review of existing and new proposal of space habitats with Earth applications. ICES-2016-367. 46th International Conference on Environmental Systems https://ttu-ir.tdl.org/ttu-ir/bitstream/handle/2346/67692/ICES2016_367_Space-Analog-Survey.pdf (2016).

  18. 18.

    Menezes, A. A. J. R. Soc. Interface 12, 20140715 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Menezes, A. A. & Montague, M. G. J. R. Soc. Interface 12, 20150803 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Montague, M. et al. Astrobiology 12, 1135–1142 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Rapp, D. Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars (Springer-Verlag, 2013); https://doi.org/10.1007/978-3-642-32762-9

  22. 22.

    Debus, A. Adv. Space Res. 35, 1648–1653 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Leshin, L. A. et al. Science 341, 1238937 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Hassler, D. M. et al. Science 343, 1244797 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. 25.

    Daines, G. NASA’s journey to Mars. http://www.nasa.gov/content/nasas-journey-to-mars (NASA, 2015).

  26. 26.

    Bramson, A. M. et al. Geophys. Res. Lett. 42, 6566–6574 (2015).

    Article  CAS  Google Scholar 

  27. 27.

    Bandfield, J. L. Nature 447, 64–67 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Stuurman, C. M. et al. Geophys. Res. Lett. 43, 9484–9491 (2016).

    Article  Google Scholar 

  29. 29.

    Heldal, M., Norland, S. & Tumyr, O. Appl. Environ. Microbiol. 50, 1251–1257 (1985).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Bratbak, G. & Dundas, I. Appl. Environ. Microbiol. 48, 755–757 (1084).

  31. 31.

    Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G. A. & Prakash, G. K. S. J. Am. Chem. Soc. 138, 778–781 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Karimi, T. Molecular Mechanisms of Autonomy in Biological Systems: Relativity of Code, Energy and Mass (Springer International Publishing, 2018).

  33. 33.

    Barta, D. J. & Henninger, D. L. Adv. Space Res. 14, 403–410 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    South, P. F., Cavanagh, A. P., Liu, H. W. & Ort, D. R. Science 363, eaat9077 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Cannon, K. M. & Britt, D. T. New Space 7, 245–254 (2019).

    Article  Google Scholar 

  36. 36.

    Denkenberger, D. & Pearce, J. Micronutrient availability in alternative foods during agricultural catastrophes. Agriculture 8, 169 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Fuhrman, J. & Ferreri, D. M. Curr. Sports Med. Rep. 9, 233–241 (2010).

    PubMed  Article  Google Scholar 

  38. 38.

    Craig, W. J. & Mangels, A. R. American Dietetic Association. J. Am. Diet. Assoc. 109, 1266–1282 (2009).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Truswell, A. S., Weininger, J., Kent-Jones, D. W. & Carpenter, K. Human nutrition—essential nutrients. https://www.britannica.com/science/human-nutrition (accessed 13 March 2020). Encyclopedia Britannica (2020).

  40. 40.

    Chistoserdova, L., Kalyuzhnaya, M. G. & Lidstrom, M. E. Annu. Rev. Microbiol. 63, 477–499 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Schrader, J. et al. Trends Biotechnol. 27, 107–115 (2009).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Cereghino, J. L. & Cregg, J. M. FEMS Microbiol. Rev. 24, 45–66 (2000).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Cregg, J. M. Pichia Protocols (Springer Science & Business Media, 2007).

  44. 44.

    OECD. Agricultural output/crop production (indicator). http://data.oecd.org/agroutput/crop-production.htm (accessed 13 March 2020). OECD Data (OECD, 2020).

  45. 45.

    Clawson, J. M., Hoehn, A., Stodieck, L. S., Todd, P. & Stoner, R. J. Re-examining aeroponics for spaceflight plant growth. SAE Technical Paper 2000-01-2507. https://doi.org/10.4271/2000-01-2507 (2000).

  46. 46.

    Khan, M. I., Shin, J. H. & Kim, J. D. Microb. Cell Factories 17, 36 (2018).

    Article  Google Scholar 

  47. 47.

    Ullah, K. et al. Prog. Nat. Sci. Mater. Int. 24, 329–339 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Clawson, J. M., Hoehn, A. & Wheeler, R. M. Inflatable transparent structures for Mars greenhouse applications. SAE Technical Paper 2005-01-2846. https://doi.org/10.4271/2005-01-2846 (2005).

  49. 49.

    Odeh, R. & Guy, C. L. Open Agric. 2, 1–13 (2017).

    Article  Google Scholar 

  50. 50.

    Jakus, A. E., Koube, K. D., Geisendorfer, N. R. & Shah, R. N. Sci. Rep. 7, 44931 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Rothschild, L. J. Biochem. Soc. Trans. 44, 1158–1164 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Kent, J. A. (ed.) Handbook of Industrial Chemistry and Biotechnology (Springer US, 2012); https://doi.org/10.1007/978-1-4614-4259-2

  53. 53.

    Tian, P., Wei, Y., Ye, M. & Liu, Z. ACS Catal. 5, 1922–1938 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    Brydson, J. A. in Plastics Materials 7th edn. (ed. Brydson, J. A.) 398–424 (Butterworth-Heinemann, 1999); https://doi.org/10.1016/B978-075064132-6/50056-5

  55. 55.

    Noda, I. Films comprising biodegradable PHA copolymers. Patent no. US6174990B1 (2001).

  56. 56.

    Merkle, P., Matthew, A. & Maccarrone, C. C. C. Hydroponic-aquaponic food production system for the Mars Desert Research Station. Mars Society Convention 2016 http://www.marspapers.org/paper/Merkle_2016_pres.pdf (2016).

  57. 57.

    Stufano, P., Carofiglio, V.E., Goffredo, A., Servili, M. & Centrone, D. Methods for producing biopolymer matrix composites. Patent no. WO2016050570A1 (2016).

  58. 58.

    Hiraishi, A. & Khan, S. T. Appl. Microbiol. Biotechnol. 61, 103–109 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Brigham, C. J., Zhila, N., Shishatskaya, E., Volova, T. G. & Sinskey, A. J. in Reprogramming Microbial Metabolic Pathways (eds. Wang, X., Chen, J. & Quinn, P.) 343–366 (Springer Netherlands, 2012); https://doi.org/10.1007/978-94-007-5055-5_17

  60. 60.

    Yu, L., Dean, K. & Li, L. Prog. Polym. Sci. 31, 576–602 (2006).

    CAS  Article  Google Scholar 

  61. 61.

    Ravi Kumar, M. N. V. React. Funct. Polym. 46, 1–27 (2000).

    Article  Google Scholar 

  62. 62.

    Myung, J., Flanagan, J. C. A., Waymouth, R. M. & Criddle, C. S. AMB Express 7, 118 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Tokareva, O., Michalczechen-Lacerda, V. A., Rech, E. L. & Kaplan, D. L. Microb. Biotechnol. 6, 651–663 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Wotring, V. E. FASEB J. 29, 4417–4423 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Nielsen, J. Bioengineered 4, 207–211 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Galanie, S., Thodey, K., Trenchard, I. J., Interrante, M. F. & Smolke, C. D. Science 349, 1095–1100 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Elander, R. P. Appl. Microbiol. Biotechnol. 61, 385–392 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Zeitlin, C. et al. Science 340, 1080–1084 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Kennedy, A. R. Life Sci. Space Res. (Amst.) 1, 10–43 (2014).

    Article  Google Scholar 

  70. 70.

    Cucinotta, F. A. & Durante, M. Lancet Oncol. 7, 431–435 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    NASA. Spaceflight radiation health program at JSC (accessed 13 March 2020). https://srag.jsc.nasa.gov/Publications/TM104782/techmemo.htm (NASA).

  72. 72.

    Singh, N. K., Blachowicz, A., Checinska, A., Wang, C. & Venkateswaran, K. Genome Announc. 4, e00553–16 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    World Health Organization. World Health Organization Model List of Essential Medicines 21st List (World Health Organization, 2019).

  74. 74.

    Crowell, L. E. et al. Nat. Biotechnol. 36, 988–995 (2018).

    CAS  Article  Google Scholar 

  75. 75.

    Boehm, R. Ann. N. Y. Acad. Sci. 1102, 121–134 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Ferrer-Miralles, N. & Villaverde, A. Microb. Cell Fact. 12, 113 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Larrick, J. W. & Thomas, D. W. Curr. Opin. Biotechnol. 12, 411–418 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Massa, S., Paolini, F., Marino, C., Franconi, R. & Venuti, A. Front. Plant Sci. 10, 452 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Baeshen, N. A. et al. Microb. Cell Factories 13, (2014).

  80. 80.

    Metcalf, J., Peterson, L., Carrasquillo, R. & Bagdigian, R. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) integrated roadmap development. 42nd International Conference on Environmental Systems (American Institute of Aeronautics and Astronautics, 2012); https://doi.org/10.2514/6.2012-3444

  81. 81.

    Pickett, M. et al. Life Sci. Space Res. (Amst.) 24, 64–82 (2020).

    Article  Google Scholar 

  82. 82.

    Ilgrande, C., Defoirdt, T., Vlaeminck, S. E., Boon, N. & Clauwaert, P. Astrobiology 19, 1353–1362 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Udert, K. M., Larsen, T. A. & Gujer, W. Water Sci. Technol. 54, 413–420 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Xia, Y., Wen, X., Zhang, B. & Yang, Y. Biotechnol. Adv. 36, 1038–1047 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Ben Said, S. & Or, D. Front. Microbiol. 8, 01125 (2017).

    Article  Google Scholar 

  86. 86.

    Haimovich, A. D., Muir, P. & Isaacs, F. J. Nat. Rev. Genet. 16, 501–516 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Nat. Biotechnol. 33, 377–383 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Venturini, K. & Verbano, C. Space Policy 30, 98–114 (2014).

    Article  Google Scholar 

  89. 89.

    Dreyer, C. et al. Rev. Sci. Instrum. 89, 064502 (2018).

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

Viriditas was a workshop organized in October 2018 at Ginkgo Bioworks by S.N.N., M.Y.W. and others to nucleate the development of a biotechnology roadmap for Mars missions. All article authors attended the event, and the conceptual framework that emerged from it was the basis for this article. The authors thank the co-organizers, sponsors, presenters and other attendees for their contribution to these ideas. The authors also thank J. Cumbers, C. Agapakis, C. Da Cunha, A. Robinson-Mosher and R. Howe for editing and guidance. S.N.N. thanks the Harvard Climate Change Solutions Fund for support. C.E.M. thanks WorldQuant, NASA (NNX14AH50G, NNX17AB26G) and TRISH (NNX16AO69A:0107, NNX16AO69A:0061).

Author information

Affiliations

Authors

Contributions

S.N.N., M.Y.W., N.M., V.N. and M.Z. wrote the manuscript, and L.H., C.E.M., M.M., P.A.S., M.S., J.S. and D.B.T provided edits. All authors contributed to its conception.

Corresponding authors

Correspondence to Shannon N. Nangle or Christopher E. Mason.

Ethics declarations

Competing interests

M.Y.W., L.H., M.M. and M.S. are employees of Ginkgo Bioworks, a Boston-based company that makes and sells engineered organisms.

Additional information

Editor’s Note: This article has been peer-reviewed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nangle, S.N., Wolfson, M.Y., Hartsough, L. et al. The case for biotech on Mars. Nat Biotechnol 38, 401–407 (2020). https://doi.org/10.1038/s41587-020-0485-4

Download citation