The stepwise application of biotechnology will be instrumental to addressing four key challenges of Martian settlement.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
On the growth dynamics of the cyanobacterium Anabaena sp. PCC 7938 in Martian regolith
npj Microgravity Open Access 26 October 2022
-
Harnessing bioengineered microbes as a versatile platform for space nutrition
Nature Communications Open Access 19 October 2022
-
Towards an extension of equivalent system mass for human exploration missions on Mars
npj Microgravity Open Access 02 August 2022
Access options
Subscribe to Nature+
Get immediate online access to Nature and 55 other Nature journal
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.

References
Drake, B. Human Exploration of Mars Design Reference Architecture 5.0 Addendum http://www.nasa.gov/pdf/373667main_NASA-SP-2009-566-ADD.pdf (NASA, 2009).
Arney, D. C., Klovstad, J. & Jones, C. A. in AIAA SPACE 2016 (American Institute of Aeronautics and Astronautics, 2016); https://doi.org/10.2514/6.2016-5489
Osczevski, R. Bull. Am. Meteorol. Soc. 95, 533–541 (2014).
Dundas, C. M. et al. Science 359, 199–201 (2018).
Orosei, R. et al. Science 361, 490–493 (2018).
Meslin, P.-Y. et al. Science 341, 1238670 (2013).
Llorente, B., Williams, T. C. & Goold, H. D. Genes (Basel) 9, 348 (2018).
Scheer, F. A. J. L., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).
Kerr, R. A. Science 340, 1031 (2013).
Reddy, V. S. New Space 6, 125–134 (2018).
Drexler, E. K. Space development: the case against Mars (Foresight Institute; reprinted from L5 News, October 1984, 1–3) https://foresight.org/nano/Mars.php (undated).
Worden, S. in Cool Stars, Stellar Systems, and the Sun: Proceedings of the 7th Cambridge Workshop, ASP Conference Series Vol. 26, 599 (1992).
Jones, H. W. Humans to Mars will cost about “half a trillion dollars” and life support roughly two billion dollars. 46th International Conference on Environmental Systems https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20200000973.pdf (2016).
Brown, M. Inverse https://www.inverse.com/article/51291-spacex-here-s-the-timeline-for-getting-to-mars-and-starting-a-colony (2019).
Thompson, A. Observer https://observer.com/2019/08/spacex-starhopper-mars-travel-colonization-plans/ (2019).
Garrett-Bakelman, F. E. et al. Science 364, eaau8650 (2019).
Schlacht, I. L. et al. Space Analog Survey: review of existing and new proposal of space habitats with Earth applications. ICES-2016-367. 46th International Conference on Environmental Systems https://ttu-ir.tdl.org/ttu-ir/bitstream/handle/2346/67692/ICES2016_367_Space-Analog-Survey.pdf (2016).
Menezes, A. A. J. R. Soc. Interface 12, 20140715 (2015).
Menezes, A. A. & Montague, M. G. J. R. Soc. Interface 12, 20150803 (2015).
Montague, M. et al. Astrobiology 12, 1135–1142 (2012).
Rapp, D. Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars (Springer-Verlag, 2013); https://doi.org/10.1007/978-3-642-32762-9
Debus, A. Adv. Space Res. 35, 1648–1653 (2005).
Leshin, L. A. et al. Science 341, 1238937 (2013).
Hassler, D. M. et al. Science 343, 1244797 (2014).
Daines, G. NASA’s journey to Mars. http://www.nasa.gov/content/nasas-journey-to-mars (NASA, 2015).
Bramson, A. M. et al. Geophys. Res. Lett. 42, 6566–6574 (2015).
Bandfield, J. L. Nature 447, 64–67 (2007).
Stuurman, C. M. et al. Geophys. Res. Lett. 43, 9484–9491 (2016).
Heldal, M., Norland, S. & Tumyr, O. Appl. Environ. Microbiol. 50, 1251–1257 (1985).
Bratbak, G. & Dundas, I. Appl. Environ. Microbiol. 48, 755–757 (1084).
Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G. A. & Prakash, G. K. S. J. Am. Chem. Soc. 138, 778–781 (2016).
Karimi, T. Molecular Mechanisms of Autonomy in Biological Systems: Relativity of Code, Energy and Mass (Springer International Publishing, 2018).
Barta, D. J. & Henninger, D. L. Adv. Space Res. 14, 403–410 (1994).
South, P. F., Cavanagh, A. P., Liu, H. W. & Ort, D. R. Science 363, eaat9077 (2019).
Cannon, K. M. & Britt, D. T. New Space 7, 245–254 (2019).
Denkenberger, D. & Pearce, J. Micronutrient availability in alternative foods during agricultural catastrophes. Agriculture 8, 169 (2018).
Fuhrman, J. & Ferreri, D. M. Curr. Sports Med. Rep. 9, 233–241 (2010).
Craig, W. J. & Mangels, A. R. American Dietetic Association. J. Am. Diet. Assoc. 109, 1266–1282 (2009).
Truswell, A. S., Weininger, J., Kent-Jones, D. W. & Carpenter, K. Human nutrition—essential nutrients. https://www.britannica.com/science/human-nutrition (accessed 13 March 2020). Encyclopedia Britannica (2020).
Chistoserdova, L., Kalyuzhnaya, M. G. & Lidstrom, M. E. Annu. Rev. Microbiol. 63, 477–499 (2009).
Schrader, J. et al. Trends Biotechnol. 27, 107–115 (2009).
Cereghino, J. L. & Cregg, J. M. FEMS Microbiol. Rev. 24, 45–66 (2000).
Cregg, J. M. Pichia Protocols (Springer Science & Business Media, 2007).
OECD. Agricultural output/crop production (indicator). http://data.oecd.org/agroutput/crop-production.htm (accessed 13 March 2020). OECD Data (OECD, 2020).
Clawson, J. M., Hoehn, A., Stodieck, L. S., Todd, P. & Stoner, R. J. Re-examining aeroponics for spaceflight plant growth. SAE Technical Paper 2000-01-2507. https://doi.org/10.4271/2000-01-2507 (2000).
Khan, M. I., Shin, J. H. & Kim, J. D. Microb. Cell Factories 17, 36 (2018).
Ullah, K. et al. Prog. Nat. Sci. Mater. Int. 24, 329–339 (2014).
Clawson, J. M., Hoehn, A. & Wheeler, R. M. Inflatable transparent structures for Mars greenhouse applications. SAE Technical Paper 2005-01-2846. https://doi.org/10.4271/2005-01-2846 (2005).
Odeh, R. & Guy, C. L. Open Agric. 2, 1–13 (2017).
Jakus, A. E., Koube, K. D., Geisendorfer, N. R. & Shah, R. N. Sci. Rep. 7, 44931 (2017).
Rothschild, L. J. Biochem. Soc. Trans. 44, 1158–1164 (2016).
Kent, J. A. (ed.) Handbook of Industrial Chemistry and Biotechnology (Springer US, 2012); https://doi.org/10.1007/978-1-4614-4259-2
Tian, P., Wei, Y., Ye, M. & Liu, Z. ACS Catal. 5, 1922–1938 (2015).
Brydson, J. A. in Plastics Materials 7th edn. (ed. Brydson, J. A.) 398–424 (Butterworth-Heinemann, 1999); https://doi.org/10.1016/B978-075064132-6/50056-5
Noda, I. Films comprising biodegradable PHA copolymers. Patent no. US6174990B1 (2001).
Merkle, P., Matthew, A. & Maccarrone, C. C. C. Hydroponic-aquaponic food production system for the Mars Desert Research Station. Mars Society Convention 2016 http://www.marspapers.org/paper/Merkle_2016_pres.pdf (2016).
Stufano, P., Carofiglio, V.E., Goffredo, A., Servili, M. & Centrone, D. Methods for producing biopolymer matrix composites. Patent no. WO2016050570A1 (2016).
Hiraishi, A. & Khan, S. T. Appl. Microbiol. Biotechnol. 61, 103–109 (2003).
Brigham, C. J., Zhila, N., Shishatskaya, E., Volova, T. G. & Sinskey, A. J. in Reprogramming Microbial Metabolic Pathways (eds. Wang, X., Chen, J. & Quinn, P.) 343–366 (Springer Netherlands, 2012); https://doi.org/10.1007/978-94-007-5055-5_17
Yu, L., Dean, K. & Li, L. Prog. Polym. Sci. 31, 576–602 (2006).
Ravi Kumar, M. N. V. React. Funct. Polym. 46, 1–27 (2000).
Myung, J., Flanagan, J. C. A., Waymouth, R. M. & Criddle, C. S. AMB Express 7, 118 (2017).
Tokareva, O., Michalczechen-Lacerda, V. A., Rech, E. L. & Kaplan, D. L. Microb. Biotechnol. 6, 651–663 (2013).
Wotring, V. E. FASEB J. 29, 4417–4423 (2015).
Nielsen, J. Bioengineered 4, 207–211 (2013).
Galanie, S., Thodey, K., Trenchard, I. J., Interrante, M. F. & Smolke, C. D. Science 349, 1095–1100 (2015).
Elander, R. P. Appl. Microbiol. Biotechnol. 61, 385–392 (2003).
Zeitlin, C. et al. Science 340, 1080–1084 (2013).
Kennedy, A. R. Life Sci. Space Res. (Amst.) 1, 10–43 (2014).
Cucinotta, F. A. & Durante, M. Lancet Oncol. 7, 431–435 (2006).
NASA. Spaceflight radiation health program at JSC (accessed 13 March 2020). https://srag.jsc.nasa.gov/Publications/TM104782/techmemo.htm (NASA).
Singh, N. K., Blachowicz, A., Checinska, A., Wang, C. & Venkateswaran, K. Genome Announc. 4, e00553–16 (2016).
World Health Organization. World Health Organization Model List of Essential Medicines 21st List (World Health Organization, 2019).
Crowell, L. E. et al. Nat. Biotechnol. 36, 988–995 (2018).
Boehm, R. Ann. N. Y. Acad. Sci. 1102, 121–134 (2007).
Ferrer-Miralles, N. & Villaverde, A. Microb. Cell Fact. 12, 113 (2013).
Larrick, J. W. & Thomas, D. W. Curr. Opin. Biotechnol. 12, 411–418 (2001).
Massa, S., Paolini, F., Marino, C., Franconi, R. & Venuti, A. Front. Plant Sci. 10, 452 (2019).
Baeshen, N. A. et al. Microb. Cell Factories 13, (2014).
Metcalf, J., Peterson, L., Carrasquillo, R. & Bagdigian, R. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) integrated roadmap development. 42nd International Conference on Environmental Systems (American Institute of Aeronautics and Astronautics, 2012); https://doi.org/10.2514/6.2012-3444
Pickett, M. et al. Life Sci. Space Res. (Amst.) 24, 64–82 (2020).
Ilgrande, C., Defoirdt, T., Vlaeminck, S. E., Boon, N. & Clauwaert, P. Astrobiology 19, 1353–1362 (2019).
Udert, K. M., Larsen, T. A. & Gujer, W. Water Sci. Technol. 54, 413–420 (2006).
Xia, Y., Wen, X., Zhang, B. & Yang, Y. Biotechnol. Adv. 36, 1038–1047 (2018).
Ben Said, S. & Or, D. Front. Microbiol. 8, 01125 (2017).
Haimovich, A. D., Muir, P. & Isaacs, F. J. Nat. Rev. Genet. 16, 501–516 (2015).
Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Nat. Biotechnol. 33, 377–383 (2015).
Venturini, K. & Verbano, C. Space Policy 30, 98–114 (2014).
Dreyer, C. et al. Rev. Sci. Instrum. 89, 064502 (2018).
Acknowledgements
Viriditas was a workshop organized in October 2018 at Ginkgo Bioworks by S.N.N., M.Y.W. and others to nucleate the development of a biotechnology roadmap for Mars missions. All article authors attended the event, and the conceptual framework that emerged from it was the basis for this article. The authors thank the co-organizers, sponsors, presenters and other attendees for their contribution to these ideas. The authors also thank J. Cumbers, C. Agapakis, C. Da Cunha, A. Robinson-Mosher and R. Howe for editing and guidance. S.N.N. thanks the Harvard Climate Change Solutions Fund for support. C.E.M. thanks WorldQuant, NASA (NNX14AH50G, NNX17AB26G) and TRISH (NNX16AO69A:0107, NNX16AO69A:0061).
Author information
Authors and Affiliations
Contributions
S.N.N., M.Y.W., N.M., V.N. and M.Z. wrote the manuscript, and L.H., C.E.M., M.M., P.A.S., M.S., J.S. and D.B.T provided edits. All authors contributed to its conception.
Corresponding authors
Ethics declarations
Competing interests
M.Y.W., L.H., M.M. and M.S. are employees of Ginkgo Bioworks, a Boston-based company that makes and sells engineered organisms.
Additional information
Editor’s Note: This article has been peer-reviewed.
Rights and permissions
About this article
Cite this article
Nangle, S.N., Wolfson, M.Y., Hartsough, L. et al. The case for biotech on Mars. Nat Biotechnol 38, 401–407 (2020). https://doi.org/10.1038/s41587-020-0485-4
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41587-020-0485-4
This article is cited by
-
Harnessing bioengineered microbes as a versatile platform for space nutrition
Nature Communications (2022)
-
Towards an extension of equivalent system mass for human exploration missions on Mars
npj Microgravity (2022)
-
On the growth dynamics of the cyanobacterium Anabaena sp. PCC 7938 in Martian regolith
npj Microgravity (2022)
-
Space bioprocess engineering on the horizon
Communications Engineering (2022)
-
The smallest space miners: principles of space biomining
Extremophiles (2022)