Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm

A Publisher Correction to this article was published on 12 March 2020

This article has been updated

Abstract

The western corn rootworm (WCR) decimates maize crops worldwide. One potential way to control this pest is treatment with entomopathogenic nematodes (EPNs) that harbor bacterial symbionts that are pathogenic to insects. However, WCR larvae sequester benzoxazinoid secondary metabolites that are produced by maize and use them to increase their resistance to the nematodes and their symbionts. Here we report that experimental evolution and selection for bacterial symbionts that are resistant to benzoxazinoids improve the ability of a nematode–symbiont pair to kill WCR larvae. We isolated five Photorhabdus symbionts from different nematodes and increased their benzoxazinoid resistance through experimental evolution. Benzoxazinoid resistance evolved through multiple mechanisms, including a mutation in the aquaporin-like channel gene aqpZ. We reintroduced benzoxazinoid-resistant Photorhabdus strains into their original EPN hosts and identified one nematode–symbiont pair that was able to kill benzoxazinoid-sequestering WCR larvae more efficiently. Our results suggest that modification of bacterial symbionts might provide a generalizable strategy to improve biocontrol of agricultural pests.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the study system.
Fig. 2: Selection on MBOA increases MBOA resistance of different Photorhabdus strains.
Fig. 3: Increased MBOA resistance is associated with various mutations.
Fig. 4: Complementation with WT aqpZ gene restores MBOA susceptibility in an MBOA-resistant aqpZ-mutant strain.
Fig. 5: Selection on MBOA alters symbiotic capability of a subset of bacterial strains.
Fig. 6: Nematodes harboring MBOA-resistant symbionts show improved biocontrol of benzoxazinoid-sequestering WCR larvae.

Data availability

Genome sequences were deposited in the National Center for Biotechnology Information (NCBI) databank. They can be retrieved using the following accession numbers: TT01-23: WSFH00000000, C-TT01: WSEZ00000000, M-TT01: WSFG00000000, IL9: WSFB00000000, C-IL9: WSEX00000000, M-IL9: WSFF00000000, M-CN4: WSFC00000000, EN01: WSFA00000000, C-EN01: WSEV00000000, M-EN01: WSFD00000000, CN4: WSEY00000000, C-CN4: WSEU00000000, HU2: NSCN00000000, C-HU2: WSEW00000000, M-HU2: WSFE00000000. Sanger sequence traces can be found at https://doi.org/10.5061/dryad.mgqnk98w4. The nematode strains CN4, IL9, EN01 and HU2 were obtained under a material transfer agreement from e-nema (Germany). TT01 nematodes are available from different laboratories and were provided by D. Clarke (University College Cork). Selected bacteria and nematodes are available upon reasonable request and the successful completion of material transfer agreements with the authors and third parties as suppliers of the source materials. Data are available in the main text and the supplementary materials. All raw datasets were deposited in Dryad: https://doi.org/10.5061/dryad.mgqnk98w4.

Change history

  • 12 March 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    LeBlanc, J. G. et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168 (2013).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Salem, H. et al. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc. Biol. Sci. 281, 20141838 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Berasategui, A. et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol. Ecol. 26, 4099–4110 (2017).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Udvardi, M. & Poole, P. S. Transport and metabolism in legume–rhizobia symbioses. Ann. Rev. Plant Biol. 64, 781–805 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Kaltenpoth, M., Göttler, W., Herzner, G. & Strohm, E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 15, 475–479 (2005).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Scarborough, C. L., Ferrari, J. & Godfray, H. C. J. Aphid protected from pathogen by endosymbiont. Science 310, 1781 (2005).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).

    Article  Google Scholar 

  8. 8.

    Mayak, S., Tirosh, T. & Glick, B. R. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166, 525–530 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    Berasategui, A., Shukla, S., Salem, H. & Kaltenpoth, M. Potential applications of insect symbionts in biotechnology. Appl. Microbiol. Biotechnol. 100, 1567–1577 (2016).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Santhanam, R., Weinhold, A., Goldberg, J., Oh, Y. & Baldwin, I. T. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl Acad. Sci. USA 112, E5013–E5020 (2015).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Shen, T.-C. D. et al. Engineering the gut microbiota to treat hyperammonemia. J. Clin. Invest. 125, 2841–2850 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Yang, S. H. et al. Rhizobial biogeography and inoculation application to soybean in four regions across China. J. Appl. Microbiol. 125, 853–866 (2018).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Zhang, J. et al. Arsenic methylation by a genetically engineered Rhizobium-legume symbiont. Plant Soil 416, 259–269 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Joyce, S. A., Watson, R. J. & Clarke, D. J. The regulation of pathogenicity and mutualism in Photorhabdus. Curr. Opin. Microbiol. 9, 127–132 (2006).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Machado, R. A. R. et al. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int. J. Syst. Evol. Microbiol. 68, 2664–2681 (2018).

    PubMed  Article  Google Scholar 

  16. 16.

    Ciche, T. A., Kim, K.-S., Kaufmann-Daszczuk, B., Nguyen, K. C. Q. & Hall, D. H. Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl. Environ. Microbiol. 74, 2275–2287 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Joyce, S. A. & Clarke, D. J. A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol. Microbiol. 47, 1445–1457 (2003).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Ffrench-Constant, R. H., Dowling, A. & Waterfield, N. R. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49, 436–451 (2007).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Jackson, J. J. Field performance of entomopathogenic nematodes for suppression of western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 89, 366–372 (1996).

    Article  Google Scholar 

  20. 20.

    Journey, A. M. & Ostlie, K. R. Biological control of the western corn rootworm (Coleoptera: Chrysomelidae) using the entomopathogenic nematode, Steinernema carpocapsae. Environ. Entomol. 29, 822–831 (2000).

    Article  Google Scholar 

  21. 21.

    Castillo, J. C., Reynolds, S. E. & Eleftherianos, I. Insect immune responses to nematode parasites. Trends Parasitol. 27, 537–547 (2011).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Barbercheck, M. E., Wang, J. & Hirsh, I. S. Host plant effects on entomopathogenic nematodes. J. Invertebr. Pathol. 66, 169–177 (1995).

    Article  Google Scholar 

  23. 23.

    Kunkel, B. A., Grewal, P. S. & Quigley, M. F. A mechanism of acquired resistance against an entomopathogenic nematode by Agrotis ipsilon feeding on perennial ryegrass harboring a fungal endophyte. Biol. Control 29, 100–108 (2004).

    Article  Google Scholar 

  24. 24.

    Erb, M. & Robert, C. A. M. Sequestration of plant secondary metabolites by insect herbivores: molecular mechanisms and ecological consequences. Curr. Opin. Insect Sci. 14, 8–11 (2016).

    PubMed  Article  Google Scholar 

  25. 25.

    Kiss, J. et al. Monitoring of western corn rootworm (Diabrotica virgifera virgifera LeConte) in Europe 1992–2003. in Western Corn Rootworm: Ecology and Management (eds Vidal, S., Kuhlmann, U. & Edwards, C. R.) 29–39 (CABI, 2005).

  26. 26.

    Robert, C. A. M. et al. A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecol. Lett. 15, 55–64 (2012).

    PubMed  Article  Google Scholar 

  27. 27.

    Hu, L. et al. Plant iron acquisition strategy exploited by an insect herbivore. Science 361, 694–697 (2018).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Robert, C. A. M. et al. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. eLife 6, e29307 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Zhang, X. et al. Plant defense resistance in natural enemies of a specialist insect herbivore. Proc. Natl Acad. Sci. USA 116, 23174–23181 (2019).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Baba, T. et al. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Strauch, O. & Ehlers, R.-U. Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Appl. Microbiol. Biotechnol. 50, 369–374 (1998).

    CAS  Article  Google Scholar 

  32. 32.

    Maag, D. et al. Highly localized and persistent induction of Bx1‐dependent herbivore resistance factors in maize. Plant J. 88, 976–991 (2016).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Aragón, P., Baselga, A. & Lobo, J. M. Global estimation of invasion risk zones for the western corn rootworm Diabrotica virgifera virgifera: integrating distribution models and physiological thresholds to assess climatic favourability. J. Appl. Ecol. 47, 1026–1035 (2010).

    Article  Google Scholar 

  34. 34.

    Gaugler, R. & Campbell, J. F. Selection for enhanced host-finding of scarab larvae (Coleoptera: Scarabaeidae) in an entomopathogenic nematode. Environ. Entomol. 20, 700–706 (1991).

    Article  Google Scholar 

  35. 35.

    Burnell, A. M. & Dowds, B. C. A. The genetic improvement of entomopathogenic nematodes and their symbiont bacteria: phenotypic targets, genetic limitations and an assessment of possible hazards. Biocontrol Sci. Technol. 6, 435–448 (1996).

    Article  Google Scholar 

  36. 36.

    Grewal, P. S., Gaugler, R. & Shupe, C. Rapid changes in thermal sensitivity of entomopathogenic nematodes in response to selection at temperature extremes. J. Invertebr. Pathol. 68, 65–73 (1996).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Strauch, O., Oestergaard, J., Hollmer, S. & Ehlers, R.-U. Genetic improvement of the desiccation tolerance of the entomopathogenic nematode Heterorhabditis bacteriophora through selective breeding. Biol. Control 31, 218–226 (2004).

    Article  Google Scholar 

  38. 38.

    Ehlers, R.-U., Oestergaard, J., Hollmer, S., Wingen, M. & Strauch, O. Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode–bacterium complex Heterorhabditis bacteriophoraPhotorhabdus luminescens. Biocontrol 50, 699–716 (2005).

    Article  Google Scholar 

  39. 39.

    Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U. & Turlings, T. C. J. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J. Exp. Biol. 213, 2417–2423 (2010).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Campos-Herrera, R. Nematode Pathogenesis of Insects and Other Pests: Ecology and Applied Technologies for Sustainable Plant and Crop Protection (Springer, 2015).

  41. 41.

    Lu, D., Baiocchi, T. & Dillman, A. R. Genomics of entomopathogenic nematodes and implications for pest control. Trends Parasitol. 32, 588–598 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Sumaya, N. H. et al. Applying inbreeding, hybridization and mutagenesis to improve oxidative stress tolerance and longevity of the entomopathogenic nematode Heterorhabditis bacteriophora. J. Invertebr. Pathol. 151, 50–58 (2018).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Han, R., Wouts, W. M. & Li, L. Development and virulence of Heterorhabditis spp. strains associated with different Xenorhabdus luminescens isolates. J. Invertebr. Pathol. 58, 27–32 (1991).

    Article  Google Scholar 

  44. 44.

    Gerritsen, L. J. M. & Smits, P. H. Variation in pathogenicity of recombinations of Heterorhabditis and Xenorhabdus luminescens strains. Fundamen. Appl. Nematol. 16, 367–373 (1993).

    Google Scholar 

  45. 45.

    Edson, K. M., Vinson, S. B., Stoltz, D. B. & Summers, M. D. Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoid’s host. Science 211, 582–583 (1981).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Lenski, R. E. Bacterial evolution and the cost of antibiotic resistance. Int. Microbiol. 1, 265–270 (1998).

    CAS  PubMed  Google Scholar 

  47. 47.

    Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Ehlers, R.-U. & Han, R. Trans-specific nematicidal activity of Photorhabdus luminescens. Nematology 1, 687–693 (1999).

    Article  Google Scholar 

  49. 49.

    Joyce, S. A. et al. Bacterial biosynthesis of a multipotent stilbene. Angew. Chem. Int. Ed. 47, 1942–1945 (2008).

    CAS  Article  Google Scholar 

  50. 50.

    Somvanshi, V. S., Kaufmann‐Daszczuk, B., Kim, K. S., Mallon, S. & Ciche, T. A. Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol. Microbiol. 77, 1021–1038 (2010).

    CAS  PubMed  Google Scholar 

  51. 51.

    Easom, C. A. & Clarke, D. J. HdfR is a regulator in Photorhabdus luminescens that modulates metabolism and symbiosis with the nematode Heterorhabditis. Environ. Microbiol. 14, 953–966 (2012).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Tobias, N. J. et al. Photorhabdus–nematode symbiosis is dependent on hfq‐mediated regulation of secondary metabolites. Environ. Microbiol. 19, 119–129 (2017).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Schnaitman, C. A. & Klena, J. D. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev. 57, 655–682 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Delcour, A. H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta. 1794, 808–816 (2009).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Fernández, L. & Hancock, R. E. W. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25, 661–681 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Jin, D. J. & Gross, C. A. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202, 45–58 (1988).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Williams, D. L. et al. Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 42, 1853–1857 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Nikaido, H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33, 1831 (1989).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Jeanteur, D. et al. Structural and functional alterations of a colicin-resistant mutant of OmpF porin from Escherichia coli. Proc. Natl Acad. Sci. USA 91, 10675–10679 (1994).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Machado, R. A. R. et al. Photorhabdus khanii subsp. guanajuatensis subsp. nov., isolated from Heterorhabditis atacamensis, and Photorhabdus luminescens subsp. mexicana subsp. nov., isolated from Heterorhabditis mexicana entomopathogenic nematodes. Int. J. Syst. Evol. Microbiol. 69, 652–661 (2019).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Mukuka, J. et al. Heat tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora. Biocontrol 55, 423–434 (2010).

    Article  Google Scholar 

  62. 62.

    Carrera, A. C. Control of the Western Corn Rootworm in Maize with Heterorhabditis bacteriophora: Influence of Field Persistence and Infectivity (University of Ghent, 2015).

  63. 63.

    Bai, X. et al. Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1. BMC Genomics 10, 205 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163 (2008).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Baranyi, J. & Roberts, T. A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23, 277–294 (1994).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Bukhman, Y. V. et al. Modeling microbial growth curves with GCAT. Bioenergy Res. 8, 1022–1030 (2015).

    CAS  Article  Google Scholar 

  67. 67.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Boetzer, M. & Pirovano, W. Toward almost closed genomes with GapFiller. Genome Biol. 13, R56 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Wüthrich, D. et al. The histidine decarboxylase gene cluster of Lactobacillus parabuchneri was gained by horizontal gene transfer and is mobile within the species. Front. Microbiol. 8, 218 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Kopp, J. & Schwede, T. The SWISS-MODEL Repository: new features and functionalities. Nucleic Acids Res. 34, D315–D318 (2006).

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Bienert, S. et al. The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res. 45, D313–D319 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Cai, X. et al. Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. Nat. Chem. 9, 379 (2017).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Münch, A., Stingl, L., Jung, K. & Heermann, R. Photorhabdus luminescens genes induced upon insect infection. BMC Genomics 9, 229 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Addis, T., Teshome, A., Strauch, O. & Ehlers, R.-U. Life history trait analysis of the entomopathogenic nematode Steinernema feltiae provides the basis for prediction of dauer juvenile yields in monoxenic liquid culture. Appl. Microbiol. Biotechnol. 100, 4357–4366 (2016).

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Kazimierczak, W. et al. Strains of Photorhabdus spp. associated with Polish Heterorhabditis isolates: their molecular and phenotypic characterization and symbiont exchange. Arch. Microbiol. 199, 979–989 (2017).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank the Next Generation Sequencing Platform and the Interfaculty Bioinformatics Unit of the University of Bern for performing whole-genome sequencing and providing the high-performance computing infrastructure. We also thank M. Fragniere and S. Schenk for their help with sequencing; D. Ermacora and A. Boss for technical assistance; R.-U. Ehlers (e-nema, Germany) and D. Clarke (University College Cork, Ireland) for contributing nematode and bacterial strains; C. Easom, D. Clarke, C. Hertz and L. Hu for contributing photographs; and the members of the Research Section Biotic Interactions of the Institute of Plant Sciences of the University of Bern for their support and helpful discussions. This project was supported by the Swiss National Science Foundation (grants 155781, 160786, 157884 and 169791) and the University of Bern through the Interfaculty Research Cooperation One Health. Work in the Bode lab was supported by the LOEWE Center TBG, funded by the state of Hesse.

Author information

Affiliations

Authors

Contributions

R.A.R.M. conceived the original project, designed, supervised and performed experiments, analyzed data and wrote the first draft of the manuscript. L.T. performed experiments and analyzed data. C.C.M.A. designed, supervised and performed experiments and analyzed data. V.T. and F.P. performed experiments. D.W. analyzed data. C.A.M.R. supervised and performed experiments. E.V., Y.-M.S., O.P.S. and M.N. performed experiments. R.B. analyzed data and provided infrastructure. S.H. and H.B.B. provided protocols, experimental material and infrastructure. M.E. conceived the original project, designed experiments, analyzed data, provided infrastructure and wrote the first draft of the manuscript. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Ricardo A. R. Machado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Supplementary Table 1

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machado, R.A.R., Thönen, L., Arce, C.C.M. et al. Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nat Biotechnol 38, 600–608 (2020). https://doi.org/10.1038/s41587-020-0419-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing