Abstract
Overcoming limitations of previous fluorescent light-up RNA aptamers for super-resolution imaging, we present RhoBAST, an aptamer that binds a fluorogenic rhodamine dye with fast association and dissociation kinetics. Its intermittent fluorescence emission enables single-molecule localization microscopy with a resolution not limited by photobleaching. We use RhoBAST to image subcellular structures of RNA in live and fixed cells with about 10-nm localization precision and a high signal-to-noise ratio.
This is a preview of subscription content
Access options
Subscribe to Nature+
Get immediate online access to the entire Nature family of 50+ journals
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.


Data availability
The data that support the findings of this study are available upon reasonable request from the corresponding authors. Aptamer sequences used for imaging ROIs are available in the Supplementary Information.
References
Sigal, Y. M., Zhou, R. & Zhuang, X. Science 361, 880–887 (2018).
Schmidt, A., Gao, G., Little, S. R., Jalihal, A. P. & Walter, N. G. Wiley Interdiscip. Rev. RNA 11, e1587 (2020).
Su, Y. & Hammond, M. C. Curr. Opin. Biotechnol. 63, 157–166 (2020).
Wirth, R., Gao, P., Nienhaus, G. U., Sunbul, M. & Jäschke, A. J. Am. Chem. Soc. 141, 7562 (2019).
Chen, X. et al. Nat. Biotechnol. 37, 1287–1293 (2019).
Sunbul, M. & Jäschke, A. Angew. Chem. Int. Ed. 52, 13401–13404 (2013).
Arora, A., Sunbul, M. & Jäschke, A. Nucleic Acids Res. 43, e144 (2015).
Braselmann, E. et al. Nat. Chem. Biol. 14, 964–971 (2018).
Sunbul, M. & Jäschke, A. Nucleic Acids Res. 46, e110 (2018).
Li, Y., Ishitsuka, Y., Hedde, P. N. & Nienhaus, G. U. ACS Nano 7, 5207–5214 (2013).
Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. J. Am. Chem. Soc. 136, 16299–16308 (2014).
Song, W. et al. Nat. Chem. Biol. 13, 1187–1194 (2017).
Autour, A. et al. Nat. Commun. 9, 656 (2018).
Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Nat. Protoc. 12, 1198–1228 (2017).
Litke, J. L. & Jaffrey, S. R. Nat. Biotechnol. 37, 667–675 (2019).
Kim, H. & Jaffrey, S. R. Cell Chem. Biol. 26, 1725–1731 e1726 (2019).
Hagerman, R. J. & Hagerman, P. Nat. Rev. Neurol. 12, 403–412 (2016).
Fox, A. H., Nakagawa, S., Hirose, T. & Bond, C. S. Trends Biochem. Sci. 43, 124–135 (2018).
Steinberg, R., Knupffer, L., Origi, A., Asti, R. & Koch, H. G. FEMS Microbiol. Lett. 365 (2018).
Wu, Y. & Shroff, H. Nat. Methods 15, 1011–1019 (2018).
Strack, R. L., Disney, M. D. & Jaffrey, S. R. Nat. Methods 10, 1219–1224 (2013).
Grimm, J. B. et al. Nat. Methods 14, 987–994 (2017).
Bajar, B. T. et al. Sci. Rep. 6, 20889 (2016).
Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).
Manz, C. et al. Nat. Chem. Biol. 13, 1172–1178 (2017).
Li, Y., Shang, L. & Nienhaus, G. U. Nanoscale 8, 7423–7429 (2016).
Ober, R. J., Ram, S. & Ward, E. S. Biophys. J. 86, 1185–1200 (2004).
Deschout, H. et al. Nat. Methods 11, 253–266 (2014).
Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Opt. Lett. 33, 156–158 (2008).
Fedorov, A. et al. Magn. Reson. Imaging 30, 1323–1341 (2012).
Acknowledgements
M.S. and A.J. were supported by the Deutsche Forschungsgemeinschaft (DFG grant no. Ja794/11) and G.U.N. by the Helmholtz Association (Program Science and Technology of Nanosystems) and the DFG (GRK 2039). We thank the Nikon Imaging Center, Heidelberg for granting access to their facilities, U. Engel for technical advice in fluorescence microscopy and M. Mayer and L. Rohland for assistance with stopped-flow measurements. We gratefully acknowledge R. Ma and A. Kobitski for technical support with SMLM experiments and analysis. We thank BASF SE for kindly providing Lutensol AT50.
Author information
Authors and Affiliations
Contributions
M.S., G.U.N. and A.J. designed the study. A.M. and M.S. evolved RhoBAST, and M.S., D.E. and F.G. characterized RhoBAST’s photophysical properties. M.S. created all plasmid constructs and strains and carried out confocal and SIM microscopy. J.L. carried out SMLM experiments and analyzed the data. J.L. and B.H. developed the assay for single-molecule binding kinetics and performed the experiments and analysis. M.S., K.N., G.U.N. and A.J. supervised the work. M.S. wrote the first draft, and all authors contributed to reviewing, editing and providing additional text for the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Biotechnology thanks Don Lamb and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–21, Supplementary Tables 1–5 and Supplementary Notes 1–3
Supplementary Video 1
Fluorescence decay of Pepper and RhoBAST
Supplementary Video 2
3D CGG repeat-containing FMR1-GFP mRNA aggregates
Rights and permissions
About this article
Cite this article
Sunbul, M., Lackner, J., Martin, A. et al. Super-resolution RNA imaging using a rhodamine-binding aptamer with fast exchange kinetics. Nat Biotechnol 39, 686–690 (2021). https://doi.org/10.1038/s41587-020-00794-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41587-020-00794-3
Further reading
-
Repurposing an adenine riboswitch into a fluorogenic imaging and sensing tag
Nature Chemical Biology (2022)
-
NIR-II emissive dye based polymer nanoparticle targeting EGFR for oral cancer theranostics
Nano Research (2022)