Detecting contamination in viromes using ViromeQC

Article metrics

Subjects

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Survey of viral enrichment rates on 1,977 samples from 35 studies estimated as percentage of reads aligning to the small subunit rRNA gene.
Fig. 2: Combined quantification of ribosomal genes and genes encoding universal proteins identifies the cross-study set of 101 samples with >100× VLP enrichment.

Data availability

The raw reads analyzed in this study are available using accession numbers provided in Supplementary Tables 1 and 2.

Code availability

Code and documentation are available at http://segatalab.cibio.unitn.it/tools/viromeqc.

References

  1. 1.

    Shkoporov, A. N. & Hill, C. Cell Host Microbe 25, 195–209 (2019).

  2. 2.

    Suttle, C. A. Nat. Rev. Microbiol. 5, 801–812 (2007).

  3. 3.

    Wang, X. et al. Nat. Commun. 1, 147 (2010).

  4. 4.

    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. PeerJ 3, e985 (2015).

  5. 5.

    Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. Microbiome 5, 69 (2017).

  6. 6.

    Thurber, R. V., Haynes, M., Breitbart, M., Wegley, L. & Rohwer, F. Nat. Protoc. 4, 470–483 (2009).

  7. 7.

    Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Nat. Biotechnol. 35, 833–844 (2017).

  8. 8.

    Reyes, A. et al. Nature 466, 334–338 (2010).

  9. 9.

    McCann, A. et al. PeerJ 6, e4694 (2018).

  10. 10.

    Roux, S. et al. Nature 537, 689–693 (2016).

  11. 11.

    Watkins, S. C. et al. Mar. Freshw. Res. 67, 1700–1708 (2016).

  12. 12.

    Rosario, K., Fierer, N., Miller, S., Luongo, J. & Breitbart, M. Environ. Sci. Technol. 52, 1014–1027 (2018).

  13. 13.

    Roux, S., Krupovic, M., Debroas, D., Forterre, P. & Enault, F. Open Biol. 3, 130160 (2013).

  14. 14.

    Minot, S. et al. Genome Res. 21, 1616–1625 (2011).

  15. 15.

    Emerson, J. B. et al. Appl. Environ. Microbiol. 78, 6309–6320 (2012).

  16. 16.

    Minot, S. et al. Proc. Natl. Acad. Sci. USA 110, 12450–12455 (2013).

  17. 17.

    Kim, Y., Aw, T. G., Teal, T. K. & Rose, J. B. Environ. Sci. Technol. 49, 8396–8407 (2015).

  18. 18.

    Ly, M. et al. Microbiome 4, 64 (2016).

  19. 19.

    Reyes, A. et al. Proc. Natl. Acad. Sci. USA 112, 11941–11946 (2015).

  20. 20.

    Roux, S. et al. PLoS One 7, e33641 (2012).

  21. 21.

    Weynberg, K. D., Wood-Charlson, E. M., Suttle, C. A. & van Oppen, M. J. H. Front. Microbiol. 5, 206 (2014).

  22. 22.

    Hannigan, G.D. et al. MBio 6, e01578–15 (2015).

  23. 23.

    Aguirre de Cárcer, D., López-Bueno, A., Alonso-Lobo, J. M., Quesada, A. & Alcamí, A. FEMS Microbiol. Ecol. 92, fiw074 (2016).

  24. 24.

    Shkoporov, A. N. et al. Microbiome 6, 68 (2018).

  25. 25.

    Pasolli, E. et al. Nat. Methods 14, 1023–1024 (2017).

  26. 26.

    Leinonen, R., Sugawara, H. & Shumway, M. & International Nucleotide Sequence Database Collaboration. Nucleic Acids Res. 39, D19–D21 (2011).

  27. 27.

    Zolfo, M., Tett, A., Jousson, O., Donati, C. & Segata, N. Nucleic Acids Res. 45, e7 gkw837 (2016).

  28. 28.

    Quince, C. et al. Genome Biol. 18, 181 (2017).

  29. 29.

    Wu, M. & Scott, A. J. Bioinformatics 28, 1033–1034 (2012).

  30. 30.

    Mizuno, C. M. et al. Nat. Commun. 10, 752 (2019).

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 716575) to N.S. The work was also supported by MIUR ‘Futuro in Ricerca’’ RBFR13EWWI_001 and by the European Union (H2020-SFS-2018-1 project MASTER-818368 and H2020-SC1-BHC project ONCOBIOME-825410) to N.S.

Author information

Study conception and design: M.Z. and N.S. Methodology and analysis: M.Z., F.P., F.A., A.T., F.B. and N.S. Public datasets collection and curation: M.Z. and P.M. All authors contributed to the writing of the final manuscript.

Correspondence to Nicola Segata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Materials

Supplementary Methods, Supplementary Note 1 and Supplementary Figures 1–7

Supplementary Table 1

Summary of the 2,050 virome datasets considered in the analysis. Dataset sample sizes are related to the actual number of samples that could be classified as DNA VLP viromes according to the available metadata. The reference number refers to Fig. 1. Fig. 2d and Supplementary Fig. 1.

Supplementary Table 2

Summary of the 2,189 metagenomes and 109 synthetic metagenomes and mock communities considered in the analysis. Dataset sample sizes are related to the actual number of samples that could be classified as DNA metagenomes according to the available metadata. The reference number refers to Fig. 1. Fig. 2d and Supplementary Fig. 1.

Supplementary Table 3

Full dataset of metagenomes and viromes. Contaminant abundances and enrichment data for all the 1,871 metagenomes, 1,670 viromes and 109 synthetic and mock communities that passed all quality controls. Sample type and number of starting reads are provided, as well as the percentage of SSU and LSU rRNAs stratified by life domain.

Supplementary Table 4

Validation of the rRNA mapping approach. Expected abundances of 16S rRNA genes are reported for the 108 synthetic and mock communities (tab 1) and 917 16S amplicon sequencing samples (tab 2). Control metagenomes and 16S samples were mapped against the SSU rRNA genes and filtered at different stringency thresholds (see Supplementary Methods). For the amplicon 16S samples at the expected value was set to 100%. The selected threshold is highlighted in blue. The composition of each synthetic metagenome is reported in tab 3. The rRNA abundances in RNA viromes are reported in tab 4.

Supplementary Table 5

Detection of single-copy bacterial markers in viral genomes. Number of genomes in each database in which the 31 single-copy markers are detected. The IMG/VR database was split into isolate viruses and uncultivated viruses (tab 1). Number of distinct single-copy markers detected in each database (tab 2).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zolfo, M., Pinto, F., Asnicar, F. et al. Detecting contamination in viromes using ViromeQC. Nat Biotechnol 37, 1408–1412 (2019) doi:10.1038/s41587-019-0334-5

Download citation