Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes

Abstract

Predictions of epitopes presented by class II human leukocyte antigen molecules (HLA-II) have limited accuracy, restricting vaccine and therapy design. Here we combined unbiased mass spectrometry with a motif deconvolution algorithm to profile and analyze a total of 99,265 unique peptides eluted from HLA-II molecules. We then trained an epitope prediction algorithm with these data and improved prediction of pathogen and tumor-associated class II neoepitopes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Motif deconvolution in HLA-II peptidomics data.
Fig. 2: MixMHC2pred improves class II epitope prediction.

Data availability

The raw datasets generated during the current study are available in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012308 and the corresponding peptide output files are provided as Supplementary Data 1 and 2. Additional datasets generated during the current study are available as Supplementary Tables 1 and 4. In addition, public datasets were analyzed in this study, obtained from the IEDB database19 and from the studies listed in Supplementary Table 2, as well as from multiple neoantigen studies listed in Supplementary Data 3.

Code availability

MoDec and MixMHC2pred are freely available as C++ executables (https://github.com/GfellerLab/ and Supplementary Code 1 and 2) for academic non-commercial research purposes. MixMHC2pred is also freely available for academic non-commercial research purposes as a web application (http://mixmhc2pred.gfellerlab.org/).

References

  1. 1.

    Neefjes, J., Jongsma, M. L. M., Paul, P. & Bakke, O. Nat. Rev. Immunol. 11, 823–836 (2011).

    CAS  PubMed  Google Scholar 

  2. 2.

    Khodadoust, M. S. et al. Nature 543, 723–727 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Linnemann, C. et al. Nat. Med. 21, 81–85 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kreiter, S. et al. Nature 520, 692–696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Andreatta, M. et al. Immunogenetics 67, 641–650 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Andreatta, M. et al. Bioinformatics 34, 1522–1528 (2018).

    CAS  PubMed  Google Scholar 

  7. 7.

    Chong, C. et al. Mol. Cell. Proteomics 17, 533–548 (2018).

    CAS  PubMed  Google Scholar 

  8. 8.

    Ritz, D. et al. Proteomics 18, 1700246 (2018).

    Google Scholar 

  9. 9.

    Bassani-Sternberg, M. et al. Nat. Commun. 7, 13404 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bassani-Sternberg, M. & Gfeller, D. J. Immunol. 197, 2492–2499 (2016).

    CAS  PubMed  Google Scholar 

  11. 11.

    Bassani-Sternberg, M. et al. PLoS Comput. Biol. 13, e1005725 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Abelin, J. G. et al. Immunity 46, 315–326 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Jurtz, V. et al. J. Immunol. 199, 3360–3368 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bulik-Sullivan, B. et al. Nat. Biotechnol. 37, 55–63 (2019).

    CAS  Google Scholar 

  15. 15.

    Barra, C. et al. Genome Med. 10, 84 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Garde, C. et al. Immunogenetics 71, 445–454 (2019).

    PubMed  Google Scholar 

  17. 17.

    Nielsen, M. & Andreatta, M. Nucleic Acids Res. 45, W344–W349 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Andreatta, M., Alvarez, B. & Nielsen, M. Nucleic Acids Res. 45, W458–W463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Vita, R. et al. Nucleic Acids Res. 47, D339–D343 (2019).

    CAS  PubMed  Google Scholar 

  20. 20.

    Jensen, K. K. et al. Immunology 154, 394–406 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. in Proc. Second International Conference on Intelligent Systems for Molecular Biology (eds Altman, R., Brutlag, D., Karp, P., Lathrop, R., & Searls, D.) 28–36 (AAAI, 1994).

  22. 22.

    Falk, K., Rötzschke, O., Stevanovíc, S., Jung, G. & Rammensee, H.-G. Immunogenetics 39, 230–242 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ciudad, M. T. et al. J. Leukoc. Biol. 101, 15–27 (2017).

    CAS  PubMed  Google Scholar 

  24. 24.

    Gfeller, D. et al. J. Immunol. 201, 3705–3716 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Yin, L., Calvo-Calle, J. M., Dominguez-Amorocho, O. & Stern, L. J. J. Immunol. 189, 3983–3994 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Dudley, M. E. et al. Clin. Cancer Res. 16, 6122–6131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Donia, M., Larsen, S. M., Met, Ö. & Svane, I. M. Cytotherapy 16, 1117–1120 (2014).

    CAS  PubMed  Google Scholar 

  28. 28.

    Vizcaíno, J. A. et al. Nucleic Acids Res. 44, D447–D456 (2016).

    PubMed  Google Scholar 

  29. 29.

    Cox, J. & Mann, M. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  30. 30.

    Gfeller, D. et al. Mol. Syst. Biol. 7, 484 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wagih, O. Bioinformatics 33, 3645–3647 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Nielsen, M. et al. Bioinformatics 20, 1388–1397 (2004).

    CAS  PubMed  Google Scholar 

  33. 33.

    Clement, C. C. et al. J. Biol. Chem. 291, 5576–5595 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Collado, J. A. et al. Eur. J. Immunol. 43, 2273–2282 (2013).

    CAS  PubMed  Google Scholar 

  35. 35.

    Ooi, J. D. et al. Nature 545, 243–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Wang, Q. et al. J. Proteome Res. 16, 122–136 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Bergseng, E. et al. Immunogenetics 67, 73–84 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bobisse, S. et al. Nat. Commun. 9, 1092 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Chattopadhyay, P. K., Yu, J. & Roederer, M. Nat. Protoc. 1, 1–6 (2006).

    CAS  PubMed  Google Scholar 

  40. 40.

    Ott, P. A. et al. Nature 547, 217–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Tran, E. et al. Science 350, 1387–1390 (2015).

    CAS  PubMed  Google Scholar 

  42. 42.

    Veatch, J. R. et al. J. Clin. Invest. 128, 1563–1568 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Veatch, J. R et al. Cancer Immunol. Res. 7, 910–922 (2019).

    PubMed  Google Scholar 

  44. 44.

    Yossef, R et al. JCI Insight 3, e122467 (2018).

    PubMed Central  Google Scholar 

  45. 45.

    Zacharakis, N. et al. Nat. Med. 24, 724–730 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Sahin, U. et al. Nature 547, 222–226 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Center of Experimental Therapeutics team for providing us with the patient-derived tissue samples and T cells. We thank P. Romero from the University of Lausanne for sharing the B cell lines with us. We thank R. T. Daniel and M. Hegi from the University Hospital of Lausanne for providing us with the collection of meningioma tissues. We thank M. Solleder for help with the visualization of motifs with ggseqlogo, F. Marino for technical support with sample preparation, H.-S. Pak for MS measurements and R. Genolet for HLA typing. This work was supported by the Swiss Cancer League (grant KFS-4104-02-2017 to D.G. and J.R.), the Ludwig Institute for Cancer Research, the ISREC Foundation thanks to a donation from the Biltema Foundation (to J.M., C.C. and M.B.-S.) and by the MEDIC foundation (to G.A.R. and C.J.).

Author information

Affiliations

Authors

Contributions

J.R. developed the computational methods; J.R. and D.G. analyzed the data; J.M., C.C. and M.B.-S. generated the MS peptidomics data; G.A.R., M.A., S.B., P.G., A.H. and C.J. performed the binding and T cell assays; G.C., A.H., C.J. and M.B.-S. provided reagents; J.R., M.B.-S. and D.G. designed the study; and J.R., M.B.S. and D.G. wrote the paper.

Corresponding authors

Correspondence to Michal Bassani-Sternberg or David Gfeller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Supplementary Tables 1–3 and Supplementary Note.

Reporting Summary

Supplementary Table 4

Viral, bacterial and tumor-associated epitopes. aList and full sequence of the viral, bacterial and tumor-associated antigens included in the experiment. bBest scoring candidate epitopes predicted by MixMHC2pred or NetMHCIIpan that were tested for immunogenicity in two patients with melanoma (LAU1352 and LAU1357) and a healthy donor.

Supplementary Data 1

List of peptides identified in the pan-HLA-II peptidomics data. For the JY cell line, an experiment with an anti-HLA-DR antibody was also performed in the same runs and is included in this table (labeled JY_DR).

Supplementary Data 2

List of peptides identified in the HLA-DR and HLA-DR-depleted peptidomics data.

Supplementary Data 3

Benchmark data containing neoepitopes from various studies. aList of peptides tested experimentally indicating which ones were CD4+ T cell immunogenic. bHLA typing from each patient and number of positive and negative epitopes tested experimentally.

Supplementary Code 1

MoDec. Executable from MoDec (v.1.1) performing the motif deconvolution.

Supplementary Code 2

MixMHC2pred. Executable from MixMHC2pred (v.1.1), predicting HLA-II ligands and epitopes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Racle, J., Michaux, J., Rockinger, G.A. et al. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat Biotechnol 37, 1283–1286 (2019). https://doi.org/10.1038/s41587-019-0289-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing