Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes

Abstract

Characterization of microbiomes has been enabled by high-throughput metagenomic sequencing. However, existing methods are not designed to combine reads from short- and long-read technologies. We present a hybrid metagenomic assembler named OPERA-MS that integrates assembly-based metagenome clustering with repeat-aware, exact scaffolding to accurately assemble complex communities. Evaluation using defined in vitro and virtual gut microbiomes revealed that OPERA-MS assembles metagenomes with greater base pair accuracy than long-read (>5×; Canu), higher contiguity than short-read (~10× NGA50; MEGAHIT, IDBA-UD, metaSPAdes) and fewer assembly errors than non-metagenomic hybrid assemblers (2×; hybridSPAdes). OPERA-MS provides strain-resolved assembly in the presence of multiple genomes of the same species, high-quality reference genomes for rare species (<1%) with ~9× long-read coverage and near-complete genomes with higher coverage. We used OPERA-MS to assemble 28 gut metagenomes of antibiotic-treated patients, and showed that the inclusion of long nanopore reads produces more contiguous assemblies (200× improvement over short-read assemblies), including more than 80 closed plasmid or phage sequences and a new 263 kbp jumbo phage. High-quality hybrid assemblies enable an exquisitely detailed view of the gut resistome in human patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: OPERA-MS workflow.
Fig. 2: Benchmarking hybrid assembly of genomes from metagenomes.
Fig. 3: Assembly of a virtual gut microbiome.
Fig. 4: Mobile elements and association with host species in the human gut microbiome.

Data availability

GIS20 mock community sequencing data can be obtained from the European Nucleotide Archive (ENA) under project ID PRJEB29139 (Illumina, PacBio and ONT) and sequencing data for the 28 gut metagenomes can be found under project ID PRJEB29152 (Illumina and ONT).

Code availability

OPERA-MS is freely available under the MIT license at https://github.com/CSB5/OPERA-MS.

References

  1. 1.

    Zhu, B., Wang, X. & Li, L. Human gut microbiome: the second genome of human body. Protein Cell 1, 718–725 (2010).

    Article  Google Scholar 

  2. 2.

    Liu, L. et al. The human microbiome: a hot spot of microbial horizontal gene transfer. Genomics 100, 265–270 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Penders, J., Stobberingh, E. E., Savelkoul, P. H. M. & Wolffs, P. F. G. The human microbiome as a reservoir of antimicrobial resistance. Front. Microbiol. 4, 87 (2013).

    Article  Google Scholar 

  4. 4.

    Loman, N. J. et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 309, 1502 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Forbes, J. D., Knox, N. C., Ronholm, J., Pagotto, F. & Reimer, A. Metagenomics: the next culture-independent game changer. Front. Microbiol. 8, 1069 (2017).

    Article  Google Scholar 

  6. 6.

    Sczyrba, A. et al. Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Sangwan, N., Xia, F. & Gilbert, J. A. Recovering complete and draft population genomes from metagenome datasets. Microbiome 4, 8 (2016).

    Article  Google Scholar 

  11. 11.

    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Brooks, B. et al. Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome. Nat. Commun. 8, 1814 (2017).

    Article  Google Scholar 

  13. 13.

    Frank, J. A. et al. Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Sci. Rep. 6, 25373 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Kuleshov, V. et al. Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Nat. Biotechnol. 34, 64–9 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Beaulaurier, J. et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat. Biotechnol. 36, 61–69 (2017).

    Article  Google Scholar 

  16. 16.

    Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Juul, S. et al. What’s in my pot? Real-time species identification on the MinION. Preprint at bioRxiv https://doi.org/10.1101/030742 (2015).

  18. 18.

    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Leggett, R. M. et al. Rapid MinION metagenomic profiling of the preterm infant gut microbiota to aid in pathogen diagnostics. Preprint at bioRxiv https://doi.org/10.1101/180406 (2017).

  20. 20.

    Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput. Biol. 13, e1005595 (2017).

    Article  Google Scholar 

  22. 22.

    Yin, M. et al. Carriage duration of carbapenemase-producing Enterobacteriaceae in a hospital cohort - implications for infection control measures. Preprint at med Rxiv 2019/001479 (2019).

  23. 23.

    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Gao, S., Bertrand, D., Chia, B. K. H. & Nagarajan, N. OPERA-LG: efficient and exact scaffolding of large, repeat-rich eukaryotic genomes with performance guarantees. Genome Biol. 17, 102 (2016).

    Article  Google Scholar 

  27. 27.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Antipov, D., Korobeynikov, A., McLean, J. S. & Pevzner, P. A. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32, 1009–1015 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Hanson, N. W. et al. Metabolic pathways for the whole community. BMC Genomics 15, 619 (2014).

    Article  Google Scholar 

  30. 30.

    Nandi, T. et al. Gut microbiome recovery after antibiotic usage is mediated by specific bacterial species. Preprint at bioRxiv https://doi.org/10.1101/350470 (2018).

  31. 31.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–55 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).

    CAS  Article  Google Scholar 

  33. 33.

    Orlek, A. et al. Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology. Front. Microbiol. 8, 182 (2017).

    Article  Google Scholar 

  34. 34.

    Yuan, Y. & Gao, M. Jumbo bacteriophages: an overview. Front. Microbiol. 8, 403 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Devoto, A. E. et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat. Microbiol. 4, 693–700 (2019).

    CAS  Article  Google Scholar 

  36. 36.

    Lin, D. M., Koskella, B. & Lin, H. C. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 8, 162–173 (2017).

    Article  Google Scholar 

  37. 37.

    Morrill, H. J., Pogue, J. M., Kaye, K. S. & LaPlante, K. L. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect. Dis. 2, ofv050–ofv050 (2015).

    Article  Google Scholar 

  38. 38.

    Meletis, G., Chatzidimitriou, D. & Malisiovas, N. Double- and multi-carbapenemase-producers: the excessively armored bacilli of the current decade. Eur. J. Clin. Microbiol. Infect. Dis. 34, 1487–93 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Trecarichi, E. M. & Tumbarello, M. Therapeutic options for carbapenem-resistant Enterobacteriaceae infections. Virulence 8, 470–484 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Lee, C.-S. & Doi, Y. Therapy of infections due to carbapenem-resistant Gram-negative pathogens. Infect. Chemother. 46, 149–64 (2014).

    Article  Google Scholar 

  41. 41.

    Partridge, S. R. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol. Rev. 35, 820–55 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    Press, M. O. et al. Hi-C deconvolution of a human gut microbiome yields high-quality draft genomes and reveals plasmid-genome interactions. Preprint at bioRxiv https://doi.org/10.1101/198713 (2017).

  43. 43.

    Bishara, A. et al. High-quality genome sequences of uncultured microbes by assembly of read clouds. Nat. Biotechnol. 36, 1067–1075 (2018).

    CAS  Article  Google Scholar 

  44. 44.

    Nayfach, S. & Pollard, K. S. Toward accurate and quantitative comparative metagenomics. Cell 166, 1103–1116 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2016).

    Article  Google Scholar 

  46. 46.

    Luo, C. et al. ConStrains identifies microbial strains in metagenomic datasets. Nat. Biotechnol. 33, 1045–52 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Quince, C. et al. DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biol. 18, 181 (2017).

    Article  Google Scholar 

  48. 48.

    Mirzaei, M. K. & Maurice, C. F. Ménage à trois in the human gut: interactions between host, bacteria and phages. Nat. Rev. Microbiol. 15, 397–408 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    Loman, N. J. & Quinlan, A. R. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics 30, 3399–3401 (2014).

    CAS  Article  Google Scholar 

  51. 51.

    Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13, 238 (2012).

    CAS  Article  Google Scholar 

  52. 52.

    Sedlar, K., Kupkova, K. & Provaznik, I. Bioinformatics strategies for taxonomy independent binning and visualization of sequences in shotgun metagenomics. Comput. Struct. Biotechnol. J. 15, 48–55 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    RAFTERY, A. E. Bayes factors and BIC. Sociol. Methods Res. 27, 411–427 (1999).

    Article  Google Scholar 

  54. 54.

    Wasserman, L. Bayesian model selection and model averaging. J. Math. Psychol. 44, 92–107 (2000).

    CAS  Article  Google Scholar 

  55. 55.

    Navlakha, S., White, J., Nagarajan, N., Pop, M. & Kingsford, C. Finding biologically accurate clusterings in hierarchical tree decompositions using the variation of information. J. Comput. Biol. 17, 503–516 (2010).

    CAS  Article  Google Scholar 

  56. 56.

    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).

    Article  Google Scholar 

  57. 57.

    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  Google Scholar 

  58. 58.

    Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016).

    CAS  Article  Google Scholar 

  59. 59.

    Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956).

    Article  Google Scholar 

  60. 60.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at http://arxiv.org/abs/1303.3997 (2013).

  61. 61.

    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Preprint at bioRxiv https://doi.org/10.1101/530972 (2019).

  62. 62.

    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Sović, I. et al. Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat. Commun. 7, 11307 (2016).

    Article  Google Scholar 

  64. 64.

    Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–90 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).

    Article  Google Scholar 

  66. 66.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  67. 67.

    Gupta, S. K. et al. ARG-ANNOT, a New bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220 (2014).

    Article  Google Scholar 

  68. 68.

    Aziz, R. K. et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).

    Article  Google Scholar 

  69. 69.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  Article  Google Scholar 

  70. 70.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  Article  Google Scholar 

  71. 71.

    Marimuthu, K. et al. Clinical and molecular epidemiology of carbapenem-resistant enterobacteriaceae among adult inpatients in Singapore. Clin. Infect. Dis. 64, S68–S75 (2017).

    Article  Google Scholar 

  72. 72.

    Zerbino, D. R. & Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    CAS  Article  Google Scholar 

  73. 73.

    Gao, S., Bertrand, D. & Nagarajan, N. in Algorithms in Bioinformatics (eds Raphael, B. & Tang, J.) 314–325 (Springer, 2012).

Download references

Acknowledgments

This work was supported by funding from the National Healthcare Group (NHG-CSCS/12008 and SIDI/2013/008) to K.M. and O.T.N., BMRC IAF (IAF311018) to K.M., O.T.N. and N.N., HBMS IAF-PP (H18/01/a0/016) and A*STAR Singapore to N.N.

Author information

Affiliations

Authors

Contributions

D.B. and N.N. designed the algorithm with inputs from J.S. and M.S.K. D.B., J.S., M.K., M.S.K., M.D. and J.P.S. implemented OPERA-MS. D.B., M.K., C.L., J.Y.K., C.T. and K.R.C. conducted computational experiments and analysis with guidance from N.N. O.T.N., T.B., B.Y. and K.M. organized volunteer recruitment and sampling. A.H.Q.N. performed wet-lab experiments. D.B. and N.N. wrote the manuscript with inputs from M.K., K.R.C. and M.S. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Niranjan Nagarajan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Supplementary Tables 1–5 and Supplementary Notes 1–3

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bertrand, D., Shaw, J., Kalathiyappan, M. et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat Biotechnol 37, 937–944 (2019). https://doi.org/10.1038/s41587-019-0191-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing