Review Article | Published:

Breeding crops to feed 10 billion


Crop improvements can help us to meet the challenge of feeding a population of 10 billion, but can we breed better varieties fast enough? Technologies such as genotyping, marker-assisted selection, high-throughput phenotyping, genome editing, genomic selection and de novo domestication could be galvanized by using speed breeding to enable plant breeders to keep pace with a changing environment and ever-increasing human population.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

  2. 2.

    Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS One 8, e66428 (2013).

  3. 3.

    Araus, J. L., Kefauver, S. C., Zaman-Allah, M., Olsen, M. S. & Cairns, J. E. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 23, 451–466 (2018).

  4. 4.

    Bassi, F. M., Bentley, A. R., Charmet, G., Ortiz, R. & Crossa, J. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 242, 23–36 (2016).

  5. 5.

    Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29 (2018).

  6. 6.

    Ghosh, S. et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13, 2944–2963 (2018).

  7. 7.

    Pfeiffer, N. E. Microchemical and morphological studies of effect of light on plants. Bot. Gaz. 81, 173–195 (1926).

  8. 8.

    Siemens, C. W. III On the influence of electric light upon vegetation, and on certain physical principles involved. Proc. R. Soc. Lond. B 30, 210–219 (1880).

  9. 9.

    Arthur, J. M., Guthrie, J. D. & Newell, J. M. Some effects of artificial climates on the growth and chemical composition of plants. Am. J. Bot. 17, 416–482 (1930).

  10. 10.

    Bugbee, B. & Koerner, G. Yield comparisons and unique characteristics of the dwarf wheat cultivar ‘USU-Apogee’. Adv. Space Res. 20, 1891–1894 (1997).

  11. 11.

    Bula, R. J. et al. Light-emitting diodes as a radiation source for plants. HortScience 26, 203–205 (1991).

  12. 12.

    Darko, E., Heydarizadeh, P., Schoefs, B. & Sabzalian, M. R. Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20130243 (2014).

  13. 13.

    Stutte, G. W. J. H. Commercial transition to LEDs: a pathway to high-value products. HortScience 50, 1297–1300 (2015).

  14. 14.

    Blakeslee, A. F. & Avery, A. G. Method of inducing doubling of chromosomes in plants: by treatment with colchicine. J. Hered. 28, 393–411 (1937).

  15. 15.

    Laurie, D. A. & Bennett, M. D. The production of haploid wheat plants from wheat × maize crosses. Theor. Appl. Genet. 76, 393–397 (1988).

  16. 16.

    Hickey, L. T. et al. Speed breeding for multiple disease resistance in barley. Euphytica 213, 64 (2017).

  17. 17.

    Schwager, R. in The Land (Fairfax Media, 2017).

  18. 18.

    Riaz, A. et al. Mining Vavilov’s treasure chest of wheat diversity for adult plant resistance to Puccinia triticina. Plant Dis. 101, 317–323 (2017).

  19. 19.

    Ziliani, G. M., Parkes, D. S., Hoteit, I. & McCabe, F. M. Intra-season crop height variability at commercial farm scales using a fixed-wing UAV. Remote Sens. 10, 12 (2018).

  20. 20.

    Wang, X. et al. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. Preprint at (2019).

  21. 21.

    Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).

  22. 22.

    Tanger, P. et al. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Sci. Rep. 7, 42839 (2017).

  23. 23.

    Wang, X., Singh, D., Marla, S., Morris, G. & Poland, J. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods 14, 53 (2018).

  24. 24.

    Shakoor, N., Lee, S. & Mockler, T. C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 38, 184–192 (2017).

  25. 25.

    Riaz, A., Periyannan, S., Aitken, E. & Hickey, L. A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods 12, 17 (2016).

  26. 26.

    Dinglasan, E., Godwin, I. D., Mortlock, M. Y. & Hickey, L. T. Resistance to yellow spot in wheat grown under accelerated growth conditions. Euphytica 209, 693–707 (2016).

  27. 27.

    Richard, C. et al. Selection in early generations to shift allele frequency for seminal root angle in wheat. Plant Genome (2018).

  28. 28.

    Fischer, R. A. R. & Rebetzke, G. J. Indirect selection for potential yield in early-generation, spaced plantings of wheat and other small-grain cereals: a review. Crop Pasture Sci. 69, 439–459 (2018).

  29. 29.

    Awlia, M. et al. High-throughput non-destructive phenotyping of traits contributing to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 7, 1414 (2016).

  30. 30.

    Al-Tamimi, N. et al. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 7, 13342 (2016).

  31. 31.

    Tovar, J. C. et al. Raspberry Pi-powered imaging for plant phenotyping. Appl. Plant Sci. 6, e1031 (2018).

  32. 32.

    Lowe, K. et al. Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

  33. 33.

    Richardson, T., Thistleton, J., Higgins, T. J., Howitt, C. & Ayliffe, M. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell Tissue Organ Cult. 119, 647–659 (2014).

  34. 34.

    Doudna, J. A. C. & Charpentier, E. Genome editing. the new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

  35. 35.

    Zhang, Z. et al. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep. 35, 1519–1533 (2016).

  36. 36.

    Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

  37. 37.

    Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K. & Mark Cigan, A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

  38. 38.

    Andersson, M. et al. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Plant. 164, 378–384 (2018).

  39. 39.

    Hamada, H. et al. An in planta biolistic method for stable wheat transformation. Sci. Rep. 7, 11443 (2017).

  40. 40.

    Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

  41. 41.

    Wang, M. et al. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol. Plant 10, 1007–1010 (2017).

  42. 42.

    Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001).

  43. 43.

    Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65, 6191–6204 (2014).

  44. 44.

    Gaffney, J. et al. Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US corn belt. Crop Sci. 55, 1608–1618 (2015).

  45. 45.

    Crain, J., Mondal, S., Rutkoski, J., Singh, R. P. & Poland, J. Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 11, 170043 (2018).

  46. 46.

    Hayes, B. J. et al. Accelerating wheat breeding for end-use quality with multi-trait genomic predictions incorporating near infrared and nuclear magnetic resonance-derived phenotypes. Theor. Appl. Genet. 130, 2505–2519 (2017).

  47. 47.

    Buckler, E.S. et al. rAmpSeq: using repetitive sequences for robust genotyping. Preprint at (2016).

  48. 48.

    Steuernagel, B., Witek, K., Jones, J. D. G. & Wulff, B. B. H. MutRenSeq: a method for rapid cloning of plant disease resistance genes. Methods Mol. Biol. 1659, 215–229 (2017).

  49. 49.

    Arora, S. et al. Resistance gene discovery and cloning by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).

  50. 50.

    Kemper, K. E., Bowman, P. J., Pryce, J. E., Hayes, B. J. & Goddard, M. E. Long-term selection strategies for complex traits using high-density genetic markers. J. Dairy Sci. 95, 4646–4656 (2012).

  51. 51.

    Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

  52. 52.

    Zsögön, A., Cermak, T., Voytas, D. & Peres, L. E. P. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato. Plant Sci. 256, 120–130 (2017).

  53. 53.

    Renny-Byfield, S. & Wendel, J. F. Doubling down on genomes: polyploidy and crop plants. Am. J. Bot. 101, 1711–1725 (2014).

  54. 54.

    Leal-Bertioli, S. C. M. et al. Segmental allopolyploidy in action: increasing diversity through polyploid hybridization and homoeologous recombination. Am. J. Bot. 105, 1053–1066 (2018).

  55. 55.

    O’Connor, D. J. et al. Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci. 40, 107–114 (2013).

  56. 56.

    Simmonds, N. W. R. & Rind, D. The Evolution of the Bananas. (Longmans, London, 1962).

  57. 57.

    Ploetz, R. C. Management of fusarium wilt of banana: a review with special reference to tropical race 4. Crop Prot. 73, 7–15 (2015).

  58. 58.

    Tripathi, J. N. et al. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun. Biol. 2, 46 (2019).

  59. 59.

    Naim, F. et al. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Res. 27, 451–460 (2018).

  60. 60.

    Ortiz, R. & Vuylsteke, D. Factors influencing seed set in triploid Musa spp. L. and production of euploid hybrids. Ann. Bot. 75, 151–155 (1995).

  61. 61.

    Jansky, S. H. et al. Reinventing potato as a diploid inbred line–based crop. Crop Sci. 56, 1412–1422 (2016).

  62. 62.

    Ortiz, R. & Swennen, R. From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol. Adv. 32, 158–169 (2014).

  63. 63.

    Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).

  64. 64.

    Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160 (2018).

  65. 65.

    Penfield, S. Seed dormancy and germination. Curr. Biol. 27, R874–R878 (2017).

  66. 66.

    Lulsdorf, M. M. & Banniza, S. Rapid generation cycling of an F2 population derived from a cross between Lens culinaris Medik. and Lens ervoides (Brign.) Grande after aphanomyces root rot selection. Plant Breed. 137, 486–491 (2018).

  67. 67.

    Zheng, Z., Wang, H. B., Chen, G. D., Yan, G. J. & Liu, C. J. A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 191, 311–316 (2013).

  68. 68.

    Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).

  69. 69.

    Draeger, T. & Moore, G. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 130, 1785–1800 (2017).

  70. 70.

    Chen, M., Chory, J. & Fankhauser, C. Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87–117 (2004).

  71. 71.

    Monostori, I. et al. LED lighting – modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Front. Plant Sci. 9, 605 (2018).

  72. 72.

    Ooi, A. et al. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light. Sci. Rep. 6, 33885 (2016).

  73. 73.

    Page, V. & Feller, U. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems. Adv. Space Res. 52, 536–546 (2013).

  74. 74.

    Asseng, S. et al. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Res. 85, 85–102 (2004).

  75. 75.

    Velez-Ramirez, A. I. et al. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat. Commun. 5, 4549 (2014).

  76. 76.

    Al-Ismaili, A. M. & Jayasuriya, H. Seawater greenhouse in Oman: a sustainable technique for freshwater conservation and production. Renew. Sustain. Energy Rev. 54, 653–664 (2016).

  77. 77.

    Liu, W. et al. A novel agricultural photovoltaic system based on solar spectrum separation. Sol. Energy 162, 84–94 (2018).

  78. 78.

    Purugganan, M. D. F. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

  79. 79.

    Xu, Y. Molecular Plant Breeding Ch. 1 (CABI, 2010).

  80. 80.

    Fischer, H. E. Origin of the ‘weisse schlesische Rübe’ (white Silesian beet) and resynthesis of sugar beet. Euphytica 41, 75–80 (1989).

  81. 81.

    Darwin, C. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life (J. Murray, 1859).

  82. 82.

    Mendel, G. Experiments in plant hybridization. Verhandlungen des naturforschenden Vereins Brünn (1865);

  83. 83.

    Johannsen, W. L. Über Erblichkeit in Populationen und reinen Linien. Eine Beitrag zur Beleuchtung schwebender Selektionsfragen [On heredity in pure lines and populations. A contribution to pending questions of selection]. (Gustav Fischer, Jena, Germany, 1903).

  84. 84.

    Harlan, H.V., Martin, M.L. & Stevens, H. A study of methods in barley breeding. U.S.D.A. Tech. Bull. 720 (1940).

  85. 85.

    Shull, G. H. What is “heterosis”? Genetics 33, 439–446 (1948).

  86. 86.

    Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918).

  87. 87.

    East, E. M. & Jones, D. F. Inbreeding and Outbreeding (Lippincott, 1919).

  88. 88.

    Harlan, H. V. & Pope, M. N. The use and value of backcrosses in small grain breeding. J. Hered. 13, 319–322 (1922).

  89. 89.

    Crabb, A.R. The Hybrid-Corn Makers: Prophets of Planty (Rutgers Univ. Press, 1947).

  90. 90.

    Stadler, L. J. Genetic effects of x-rays in maize. Proc. Natl Acad. Sci. USA 14, 69–75 (1928).

  91. 91.

    Goulden, C.H. Problems in plant selection. in Proceedings of the Seventh International Genetics Congress (Cambridge Univ. Press, 1939).

  92. 92.

    Ortiz, R. et al. High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica 157, 365–384 (2007).

  93. 93.

    Hull, F. H. Recurrent selection for specific combining ability in corn. J. Am. Soc. Agron. 37, 134–145 (1945).

  94. 94.

    Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).

  95. 95.

    Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).

  96. 96.

    Helentjaris, T., King, G., Slocum, M., Siedenstrang, C. & Wegman, S. Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol. Biol. 5, 109–118 (1985).

  97. 97.

    Welsh, J. & McClelland, M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213–7218 (1990).

  98. 98.

    Akkaya, M. S., Bhagwat, A. A. & Cregan, P. B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132, 1131–1139 (1992).

  99. 99.

    Kramer, M. G. & Redenbaugh, K. Commercialization of a tomato with an antisense polygalacturonase gene: the FLAVR SAVR™ tomato story. Euphytica 79, 293–297 (1994).

  100. 100.

    Lin, J.-J. & Kuo, J. AFLPTM: a novel PCR-based assay for plant and bacterial DNA fingerprinting. Focus 17, 66–70 (1995).

  101. 101.

    Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  102. 102.

    Jander, G. et al. Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129, 440–450 (2002).

  103. 103.

    Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

  104. 104.

    International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

  105. 105.

    Bernardo, R. Y. & Yu, J. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47, 1082–1090 (2007).

  106. 106.

    Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

  107. 107.

    Mahfouz, M. M. et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl Acad. Sci. USA 108, 2623–2628 (2011).

  108. 108.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

  109. 109.

    The International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).

  110. 110.

    Collard, B. C. Y. et al. Revisiting rice breeding methods–evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod. Sci. 20, 337–352 (2017).

  111. 111.

    Tanaka, J., Hayashi, T. & Iwata, H. A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed. Sci. 66, 542–551 (2016).

  112. 112.

    Nagatoshi, Y. & Fujita, Y. Accelerating soybean breeding in a CO2-supplemented growth chamber. Plant Cell Physiol. 60, 77–84 (2019).

  113. 113.

    Rizal, G. et al. Shortening the breeding cycle of sorghum, a model crop for research. Crop Sci. 54, 520–529 (2014).

  114. 114.

    Ashraf, M. & Hafeez, M. Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol. Plant. 48, 81–86 (2004).

  115. 115.

    Li, H., Xu, Z. & Tang, C. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Organ Cult. 103, 155–163 (2010).

  116. 116.

    Hale, A. L., White, P. M., Webber, C. L. III & Todd, J. R. Effect of growing media and fertilization on sugarcane flowering under artificial photoperiod. PLoS One 12, e0181639 (2017).

Download references


We thank V. Korzun and C. Uauy for feedback on an earlier draft of this manuscript, T. Draeger for discussions, and T. Florio ( for the artwork. B.W. was supported by the Biotechnology and Biological Sciences Research Council cross-institute strategic programme Designing Future Wheat (BB/P016855/1) and the 2Blades Foundation, M.T. by King Abdullah University of Science & Technology, L.T.H. by an Australian Research Council Early Career Discovery Research Award (DE170101296), C.G. by the National Natural Science Foundation of China (31788103), and S.L.-B. by the Peanut Foundation.

Author information

Correspondence to Lee T. Hickey or Brande B. H. Wulff.

Ethics declarations

Competing interests

H.R. is an employee of Intergrain, which produces and markets plant breeding materials.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

A brief history of breeding

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Timeline of key plant breeding techniques and technologies. Some events have been color-coded by theme: green, left, conventional breeding; green, right, genome engineering; brown, DNA markers; pink, genome sequences; blue, other key events.
Fig. 2: Rapid trait stacking through speed breeding and marker assisted selection.
Fig. 3: ExpressEdit approaches, in which rapid genome editing can be performed directly in the speed breeding system.
Fig. 4: Breeding strategies.
Fig. 5: ‘Supercharging’ plant growth: speed breeding 2.0.