Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Breeding crops to feed 10 billion

Abstract

Crop improvements can help us to meet the challenge of feeding a population of 10 billion, but can we breed better varieties fast enough? Technologies such as genotyping, marker-assisted selection, high-throughput phenotyping, genome editing, genomic selection and de novo domestication could be galvanized by using speed breeding to enable plant breeders to keep pace with a changing environment and ever-increasing human population.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of key plant breeding techniques and technologies. Some events have been color-coded by theme: green, left, conventional breeding; green, right, genome engineering; brown, DNA markers; pink, genome sequences; blue, other key events.
Fig. 2: Rapid trait stacking through speed breeding and marker assisted selection.
Fig. 3: ExpressEdit approaches, in which rapid genome editing can be performed directly in the speed breeding system.
Fig. 4: Breeding strategies.
Fig. 5: ‘Supercharging’ plant growth: speed breeding 2.0.

References

  1. 1.

    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    PubMed  Google Scholar 

  2. 2.

    Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS One 8, e66428 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Araus, J. L., Kefauver, S. C., Zaman-Allah, M., Olsen, M. S. & Cairns, J. E. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 23, 451–466 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bassi, F. M., Bentley, A. R., Charmet, G., Ortiz, R. & Crossa, J. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 242, 23–36 (2016).

    CAS  PubMed  Google Scholar 

  5. 5.

    Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29 (2018).

    PubMed  Google Scholar 

  6. 6.

    Ghosh, S. et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13, 2944–2963 (2018).

    CAS  PubMed  Google Scholar 

  7. 7.

    Pfeiffer, N. E. Microchemical and morphological studies of effect of light on plants. Bot. Gaz. 81, 173–195 (1926).

    CAS  Google Scholar 

  8. 8.

    Siemens, C. W. III On the influence of electric light upon vegetation, and on certain physical principles involved. Proc. R. Soc. Lond. B 30, 210–219 (1880).

    Google Scholar 

  9. 9.

    Arthur, J. M., Guthrie, J. D. & Newell, J. M. Some effects of artificial climates on the growth and chemical composition of plants. Am. J. Bot. 17, 416–482 (1930).

    CAS  Google Scholar 

  10. 10.

    Bugbee, B. & Koerner, G. Yield comparisons and unique characteristics of the dwarf wheat cultivar ‘USU-Apogee’. Adv. Space Res. 20, 1891–1894 (1997).

    CAS  PubMed  Google Scholar 

  11. 11.

    Bula, R. J. et al. Light-emitting diodes as a radiation source for plants. HortScience 26, 203–205 (1991).

    CAS  PubMed  Google Scholar 

  12. 12.

    Darko, E., Heydarizadeh, P., Schoefs, B. & Sabzalian, M. R. Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20130243 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Stutte, G. W. J. H. Commercial transition to LEDs: a pathway to high-value products. HortScience 50, 1297–1300 (2015).

    Google Scholar 

  14. 14.

    Blakeslee, A. F. & Avery, A. G. Method of inducing doubling of chromosomes in plants: by treatment with colchicine. J. Hered. 28, 393–411 (1937).

    CAS  Google Scholar 

  15. 15.

    Laurie, D. A. & Bennett, M. D. The production of haploid wheat plants from wheat × maize crosses. Theor. Appl. Genet. 76, 393–397 (1988).

    CAS  PubMed  Google Scholar 

  16. 16.

    Hickey, L. T. et al. Speed breeding for multiple disease resistance in barley. Euphytica 213, 64 (2017).

    Google Scholar 

  17. 17.

    Schwager, R. in The Land (Fairfax Media, 2017).

  18. 18.

    Riaz, A. et al. Mining Vavilov’s treasure chest of wheat diversity for adult plant resistance to Puccinia triticina. Plant Dis. 101, 317–323 (2017).

    PubMed  Google Scholar 

  19. 19.

    Ziliani, G. M., Parkes, D. S., Hoteit, I. & McCabe, F. M. Intra-season crop height variability at commercial farm scales using a fixed-wing UAV. Remote Sens. 10, 12 (2018).

    Google Scholar 

  20. 20.

    Wang, X. et al. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. Preprint at https://doi.org/10.1101/527911 (2019).

  21. 21.

    Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).

    CAS  Google Scholar 

  22. 22.

    Tanger, P. et al. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Sci. Rep. 7, 42839 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wang, X., Singh, D., Marla, S., Morris, G. & Poland, J. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods 14, 53 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Shakoor, N., Lee, S. & Mockler, T. C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 38, 184–192 (2017).

    PubMed  Google Scholar 

  25. 25.

    Riaz, A., Periyannan, S., Aitken, E. & Hickey, L. A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods 12, 17 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Dinglasan, E., Godwin, I. D., Mortlock, M. Y. & Hickey, L. T. Resistance to yellow spot in wheat grown under accelerated growth conditions. Euphytica 209, 693–707 (2016).

    Google Scholar 

  27. 27.

    Richard, C. et al. Selection in early generations to shift allele frequency for seminal root angle in wheat. Plant Genome https://doi.org/10.3835/plantgenome2017.08.0071 (2018).

    Google Scholar 

  28. 28.

    Fischer, R. A. R. & Rebetzke, G. J. Indirect selection for potential yield in early-generation, spaced plantings of wheat and other small-grain cereals: a review. Crop Pasture Sci. 69, 439–459 (2018).

    Google Scholar 

  29. 29.

    Awlia, M. et al. High-throughput non-destructive phenotyping of traits contributing to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 7, 1414 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Al-Tamimi, N. et al. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 7, 13342 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Tovar, J. C. et al. Raspberry Pi-powered imaging for plant phenotyping. Appl. Plant Sci. 6, e1031 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lowe, K. et al. Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Richardson, T., Thistleton, J., Higgins, T. J., Howitt, C. & Ayliffe, M. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell Tissue Organ Cult. 119, 647–659 (2014).

    CAS  Google Scholar 

  34. 34.

    Doudna, J. A. C. & Charpentier, E. Genome editing. the new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    PubMed  Google Scholar 

  35. 35.

    Zhang, Z. et al. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep. 35, 1519–1533 (2016).

    CAS  PubMed  Google Scholar 

  36. 36.

    Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K. & Mark Cigan, A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Andersson, M. et al. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Plant. 164, 378–384 (2018).

    CAS  PubMed  Google Scholar 

  39. 39.

    Hamada, H. et al. An in planta biolistic method for stable wheat transformation. Sci. Rep. 7, 11443 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

    CAS  PubMed  Google Scholar 

  41. 41.

    Wang, M. et al. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol. Plant 10, 1007–1010 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65, 6191–6204 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Gaffney, J. et al. Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US corn belt. Crop Sci. 55, 1608–1618 (2015).

    Google Scholar 

  45. 45.

    Crain, J., Mondal, S., Rutkoski, J., Singh, R. P. & Poland, J. Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 11, 170043 (2018).

    Google Scholar 

  46. 46.

    Hayes, B. J. et al. Accelerating wheat breeding for end-use quality with multi-trait genomic predictions incorporating near infrared and nuclear magnetic resonance-derived phenotypes. Theor. Appl. Genet. 130, 2505–2519 (2017).

    CAS  PubMed  Google Scholar 

  47. 47.

    Buckler, E.S. et al. rAmpSeq: using repetitive sequences for robust genotyping. Preprint at https://doi.org/10.1101/096628 (2016).

  48. 48.

    Steuernagel, B., Witek, K., Jones, J. D. G. & Wulff, B. B. H. MutRenSeq: a method for rapid cloning of plant disease resistance genes. Methods Mol. Biol. 1659, 215–229 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Arora, S. et al. Resistance gene discovery and cloning by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Kemper, K. E., Bowman, P. J., Pryce, J. E., Hayes, B. J. & Goddard, M. E. Long-term selection strategies for complex traits using high-density genetic markers. J. Dairy Sci. 95, 4646–4656 (2012).

    CAS  PubMed  Google Scholar 

  51. 51.

    Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

    CAS  PubMed  Google Scholar 

  52. 52.

    Zsögön, A., Cermak, T., Voytas, D. & Peres, L. E. P. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato. Plant Sci. 256, 120–130 (2017).

    PubMed  Google Scholar 

  53. 53.

    Renny-Byfield, S. & Wendel, J. F. Doubling down on genomes: polyploidy and crop plants. Am. J. Bot. 101, 1711–1725 (2014).

    PubMed  Google Scholar 

  54. 54.

    Leal-Bertioli, S. C. M. et al. Segmental allopolyploidy in action: increasing diversity through polyploid hybridization and homoeologous recombination. Am. J. Bot. 105, 1053–1066 (2018).

    CAS  PubMed  Google Scholar 

  55. 55.

    O’Connor, D. J. et al. Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci. 40, 107–114 (2013).

    Google Scholar 

  56. 56.

    Simmonds, N. W. R. & Rind, D. The Evolution of the Bananas. (Longmans, London, 1962).

    Google Scholar 

  57. 57.

    Ploetz, R. C. Management of fusarium wilt of banana: a review with special reference to tropical race 4. Crop Prot. 73, 7–15 (2015).

    CAS  Google Scholar 

  58. 58.

    Tripathi, J. N. et al. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun. Biol. 2, 46 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Naim, F. et al. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Res. 27, 451–460 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Ortiz, R. & Vuylsteke, D. Factors influencing seed set in triploid Musa spp. L. and production of euploid hybrids. Ann. Bot. 75, 151–155 (1995).

    Google Scholar 

  61. 61.

    Jansky, S. H. et al. Reinventing potato as a diploid inbred line–based crop. Crop Sci. 56, 1412–1422 (2016).

    CAS  Google Scholar 

  62. 62.

    Ortiz, R. & Swennen, R. From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol. Adv. 32, 158–169 (2014).

    CAS  PubMed  Google Scholar 

  63. 63.

    Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).

    CAS  PubMed  Google Scholar 

  64. 64.

    Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160 (2018).

    CAS  Google Scholar 

  65. 65.

    Penfield, S. Seed dormancy and germination. Curr. Biol. 27, R874–R878 (2017).

    CAS  PubMed  Google Scholar 

  66. 66.

    Lulsdorf, M. M. & Banniza, S. Rapid generation cycling of an F2 population derived from a cross between Lens culinaris Medik. and Lens ervoides (Brign.) Grande after aphanomyces root rot selection. Plant Breed. 137, 486–491 (2018).

    CAS  Google Scholar 

  67. 67.

    Zheng, Z., Wang, H. B., Chen, G. D., Yan, G. J. & Liu, C. J. A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 191, 311–316 (2013).

    Google Scholar 

  68. 68.

    Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).

    Google Scholar 

  69. 69.

    Draeger, T. & Moore, G. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 130, 1785–1800 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Chen, M., Chory, J. & Fankhauser, C. Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87–117 (2004).

    CAS  PubMed  Google Scholar 

  71. 71.

    Monostori, I. et al. LED lighting – modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Front. Plant Sci. 9, 605 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Ooi, A. et al. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light. Sci. Rep. 6, 33885 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Page, V. & Feller, U. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems. Adv. Space Res. 52, 536–546 (2013).

    CAS  Google Scholar 

  74. 74.

    Asseng, S. et al. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Res. 85, 85–102 (2004).

    Google Scholar 

  75. 75.

    Velez-Ramirez, A. I. et al. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat. Commun. 5, 4549 (2014).

    CAS  PubMed  Google Scholar 

  76. 76.

    Al-Ismaili, A. M. & Jayasuriya, H. Seawater greenhouse in Oman: a sustainable technique for freshwater conservation and production. Renew. Sustain. Energy Rev. 54, 653–664 (2016).

    Google Scholar 

  77. 77.

    Liu, W. et al. A novel agricultural photovoltaic system based on solar spectrum separation. Sol. Energy 162, 84–94 (2018).

    Google Scholar 

  78. 78.

    Purugganan, M. D. F. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

    CAS  PubMed  Google Scholar 

  79. 79.

    Xu, Y. Molecular Plant Breeding Ch. 1 (CABI, 2010).

  80. 80.

    Fischer, H. E. Origin of the ‘weisse schlesische Rübe’ (white Silesian beet) and resynthesis of sugar beet. Euphytica 41, 75–80 (1989).

    Google Scholar 

  81. 81.

    Darwin, C. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life (J. Murray, 1859).

  82. 82.

    Mendel, G. Experiments in plant hybridization. Verhandlungen des naturforschenden Vereins Brünn (1865); http://www.mendelweb.org/mendel.html

  83. 83.

    Johannsen, W. L. Über Erblichkeit in Populationen und reinen Linien. Eine Beitrag zur Beleuchtung schwebender Selektionsfragen [On heredity in pure lines and populations. A contribution to pending questions of selection]. (Gustav Fischer, Jena, Germany, 1903).

    Google Scholar 

  84. 84.

    Harlan, H.V., Martin, M.L. & Stevens, H. A study of methods in barley breeding. U.S.D.A. Tech. Bull. 720 (1940).

  85. 85.

    Shull, G. H. What is “heterosis”? Genetics 33, 439–446 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918).

    Google Scholar 

  87. 87.

    East, E. M. & Jones, D. F. Inbreeding and Outbreeding (Lippincott, 1919).

  88. 88.

    Harlan, H. V. & Pope, M. N. The use and value of backcrosses in small grain breeding. J. Hered. 13, 319–322 (1922).

    Google Scholar 

  89. 89.

    Crabb, A.R. The Hybrid-Corn Makers: Prophets of Planty (Rutgers Univ. Press, 1947).

  90. 90.

    Stadler, L. J. Genetic effects of x-rays in maize. Proc. Natl Acad. Sci. USA 14, 69–75 (1928).

    CAS  PubMed  Google Scholar 

  91. 91.

    Goulden, C.H. Problems in plant selection. in Proceedings of the Seventh International Genetics Congress (Cambridge Univ. Press, 1939).

  92. 92.

    Ortiz, R. et al. High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica 157, 365–384 (2007).

    Google Scholar 

  93. 93.

    Hull, F. H. Recurrent selection for specific combining ability in corn. J. Am. Soc. Agron. 37, 134–145 (1945).

    Google Scholar 

  94. 94.

    Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).

    Google Scholar 

  95. 95.

    Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).

    CAS  PubMed  Google Scholar 

  96. 96.

    Helentjaris, T., King, G., Slocum, M., Siedenstrang, C. & Wegman, S. Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol. Biol. 5, 109–118 (1985).

    CAS  PubMed  Google Scholar 

  97. 97.

    Welsh, J. & McClelland, M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213–7218 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Akkaya, M. S., Bhagwat, A. A. & Cregan, P. B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132, 1131–1139 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Kramer, M. G. & Redenbaugh, K. Commercialization of a tomato with an antisense polygalacturonase gene: the FLAVR SAVR™ tomato story. Euphytica 79, 293–297 (1994).

    Google Scholar 

  100. 100.

    Lin, J.-J. & Kuo, J. AFLPTM: a novel PCR-based assay for plant and bacterial DNA fingerprinting. Focus 17, 66–70 (1995).

    Google Scholar 

  101. 101.

    Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Google Scholar 

  102. 102.

    Jander, G. et al. Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129, 440–450 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Google Scholar 

  105. 105.

    Bernardo, R. Y. & Yu, J. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47, 1082–1090 (2007).

    Google Scholar 

  106. 106.

    Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    CAS  PubMed  Google Scholar 

  107. 107.

    Mahfouz, M. M. et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl Acad. Sci. USA 108, 2623–2628 (2011).

    CAS  PubMed  Google Scholar 

  108. 108.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    The International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).

    Google Scholar 

  110. 110.

    Collard, B. C. Y. et al. Revisiting rice breeding methods–evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod. Sci. 20, 337–352 (2017).

    Google Scholar 

  111. 111.

    Tanaka, J., Hayashi, T. & Iwata, H. A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed. Sci. 66, 542–551 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Nagatoshi, Y. & Fujita, Y. Accelerating soybean breeding in a CO2-supplemented growth chamber. Plant Cell Physiol. 60, 77–84 (2019).

    PubMed  Google Scholar 

  113. 113.

    Rizal, G. et al. Shortening the breeding cycle of sorghum, a model crop for research. Crop Sci. 54, 520–529 (2014).

    Google Scholar 

  114. 114.

    Ashraf, M. & Hafeez, M. Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol. Plant. 48, 81–86 (2004).

    CAS  Google Scholar 

  115. 115.

    Li, H., Xu, Z. & Tang, C. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Organ Cult. 103, 155–163 (2010).

    Google Scholar 

  116. 116.

    Hale, A. L., White, P. M., Webber, C. L. III & Todd, J. R. Effect of growing media and fertilization on sugarcane flowering under artificial photoperiod. PLoS One 12, e0181639 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank V. Korzun and C. Uauy for feedback on an earlier draft of this manuscript, T. Draeger for discussions, and T. Florio (www.flozbox.com/Science.illustrated) for the artwork. B.W. was supported by the Biotechnology and Biological Sciences Research Council cross-institute strategic programme Designing Future Wheat (BB/P016855/1) and the 2Blades Foundation, M.T. by King Abdullah University of Science & Technology, L.T.H. by an Australian Research Council Early Career Discovery Research Award (DE170101296), C.G. by the National Natural Science Foundation of China (31788103), and S.L.-B. by the Peanut Foundation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lee T. Hickey or Brande B. H. Wulff.

Ethics declarations

Competing interests

H.R. is an employee of Intergrain, which produces and markets plant breeding materials.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

A brief history of breeding

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hickey, L.T., N. Hafeez, A., Robinson, H. et al. Breeding crops to feed 10 billion. Nat Biotechnol 37, 744–754 (2019). https://doi.org/10.1038/s41587-019-0152-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing