Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Toward a new generation of smart skins

Rapid advances in soft electronics, microfabrication technologies, miniaturization and electronic skins are facilitating the development of wearable sensor devices that are highly conformable and intimately associated with human skin. These devices—referred to as ‘smart skins’—offer new opportunities in the research study of human biology, in physiological tracking for fitness and wellness applications, and in the examination and treatment of medical conditions. Over the past 12 months, electronic skins have been developed that are self-healing, intrinsically stretchable, designed into an artificial afferent nerve, and even self-powered. Greater collaboration between engineers, biologists, informaticians and clinicians will be required for smart skins to realize their full potential and attain wide adoption in a diverse range of real-world settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic structure of human skin.
Fig. 2: Recent research trends in smart skin from four viewpoints.

Similar content being viewed by others

References

  1. Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

    Article  CAS  Google Scholar 

  2. Chiauzzi, E., Rodarte, C. & DasMahapatra, P. Patient-centered activity monitoring in the self-management of chronic health conditions. BMC Med. 13, 77 (2015).

    Article  Google Scholar 

  3. Piwek, L., Ellis, D. A., Andrews, S. & Joinson, A. The rise of consumer health wearables: promises and barriers. PLoS Med. 13, e1001953 (2016).

    Article  Google Scholar 

  4. Gambhir, S. S., Ge, T. J., Vermesh, O. & Spitler, R. Toward achieving precision health. Sci. Transl. Med. 10, eaao3612 (2018).

    Article  Google Scholar 

  5. Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).

    Article  CAS  Google Scholar 

  6. Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

    Article  CAS  Google Scholar 

  7. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  CAS  Google Scholar 

  8. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  9. Taylor, N. A. S., Tipton, M. J. & Kenny, G. P. Considerations for the measurement of core, skin and mean body temperatures. J. Therm. Biol. 46, 72–101 (2014).

    Article  Google Scholar 

  10. Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013).

    Article  Google Scholar 

  11. Kang, D. et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014).

    Article  CAS  Google Scholar 

  12. Yao, S. & Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6, 2345–2352 (2014).

    Article  CAS  Google Scholar 

  13. Klonoff, D. C. Noninvasive blood glucose monitoring. Diabetes Care 20, 433–437 (1997).

    Article  CAS  Google Scholar 

  14. Lee, H. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017).

    Article  Google Scholar 

  15. Farandos, N. M., Yetisen, A. K., Monteiro, M. J., Lowe, C. R. & Yun, S. H. Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 4, 792–810 (2015).

    Article  CAS  Google Scholar 

  16. Kim, J., Campbell, A. S. & Wang, J. Wearable non-invasive epidermal glucose sensors: a review. Talanta 177, 163–170 (2018).

    Article  CAS  Google Scholar 

  17. Lee, H., Hong, Y. J., Baik, S., Hyeon, T. & Kim, D.-H. Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7, e1701150 (2018).

    Article  Google Scholar 

  18. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article  Google Scholar 

  19. Choi, J. et al. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4, aar3921 (2018).

    Article  Google Scholar 

  20. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  Google Scholar 

  21. Ghaffari, R., Baker, L. B. & Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4, eaar3921 (2018).

    Article  Google Scholar 

  22. Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).

    Article  Google Scholar 

  23. Lochner, C. M., Khan, Y., Pierre, A. & Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014).

    Article  CAS  Google Scholar 

  24. Blattner, C. M., Coman, G., Blickenstaff, N. R. & Maibach, H. I. Percutaneous absorption of water in skin: a review. Rev. Environ. Health 29, 175–180 (2014).

    Article  CAS  Google Scholar 

  25. Ceriello, A. Impaired glucose tolerance and cardiovascular disease: the possible role of post-prandial hyperglycemia. Am. Heart J. 147, 803–807 (2004).

    Article  CAS  Google Scholar 

  26. Hanson, K. M. et al. Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys. J. 83, 1682–1690 (2002).

    Article  CAS  Google Scholar 

  27. Segre, J. A. Epidermal barrier formation and recovery in skin disorders. J. Clin. Invest. 116, 1150–1158 (2006).

    Article  CAS  Google Scholar 

  28. Matsui, T. & Amagai, M. Dissecting the formation, structure and barrier function of the stratum corneum. Int. Immunol. 27, 269–280 (2015).

    Article  CAS  Google Scholar 

  29. Kubo, A., Nagao, K. & Amagai, M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J. Clin. Invest. 122, 440–447 (2012).

    Article  CAS  Google Scholar 

  30. Tsukita, S., Furuse, M. & Itoh, M. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2, 285–293 (2001).

    Article  CAS  Google Scholar 

  31. Candi, E., Schmidt, R. & Melino, G. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 6, 328–340 (2005).

    Article  CAS  Google Scholar 

  32. Manabe, M., Sanchez, M., Sun, T. T. & Dale, B. A. Interaction of filaggrin with keratin filaments during advanced stages of normal human epidermal differentiation and in ichthyosis vulgaris. Differentiation 48, 43–50 (1991).

    Article  CAS  Google Scholar 

  33. Bouwstra, J. A. et al. Water distribution and related morphology in human stratum corneum at different hydration levels. J. Invest. Dermatol. 120, 750–758 (2003).

    Article  CAS  Google Scholar 

  34. Kubo, A. et al. The stratum corneum comprises three layers with distinct metal-ion barrier properties. Sci. Rep. 3, 1731 (2013).

    Article  Google Scholar 

  35. Yoshida, K. et al. Functional tight junction barrier localizes in the second layer of the stratum granulosum of human epidermis. J. Dermatol. Sci. 71, 89–99 (2013).

    Article  Google Scholar 

  36. Van Itallie, C. M. & Anderson, J. M. Architecture of tight junctions and principles of molecular composition. Semin. Cell Dev. Biol. 36, 157–165 (2014).

    Article  Google Scholar 

  37. Yokouchi, M. et al. Epidermal cell turnover across tight junctions based on Kelvin’s tetrakaidecahedron cell shape. Elife 5, e19593 (2016).

    Article  Google Scholar 

  38. Nagao, K. et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13, 744–752 (2012).

    Article  CAS  Google Scholar 

  39. Thyssen, J. P. & Menné, T. Metal allergy—a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem. Res. Toxicol. 23, 309–318 (2010).

    Article  CAS  Google Scholar 

  40. Winston, F. K. & Yan, A. C. Wearable health device dermatitis: a case of acrylate-related contact allergy. Cutis 100, 97–99 (2017).

    PubMed  Google Scholar 

  41. European Task Force on Atopic Dermatitis. Severity scoring of atopic dermatitis: the SCORAD index. Consensus report of the European Task Force on Atopic Dermatitis. Dermatology 186, 23–31 (1993).

    Article  Google Scholar 

  42. Hanifin, J. M. et al. EASI Evaluator Group. The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis. Exp. Dermatol. 10, 11–18 (2001).

    Article  CAS  Google Scholar 

  43. Zucca, A. et al. Roll to roll processing of ultraconformable conducting polymer nanosheets. J. Mater. Chem. C 3, 6539–6548 (2015).

    Article  CAS  Google Scholar 

  44. Imani, S. et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    Article  CAS  Google Scholar 

  45. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  CAS  Google Scholar 

  46. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  CAS  Google Scholar 

  47. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article  CAS  Google Scholar 

  48. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  CAS  Google Scholar 

  49. Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article  CAS  Google Scholar 

  50. Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    Article  CAS  Google Scholar 

  51. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  CAS  Google Scholar 

  52. Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A. & Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016).

    Article  CAS  Google Scholar 

  53. Choi, S., Lee, H., Ghaffari, R., Hyeon, T. & Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016).

    Article  CAS  Google Scholar 

  54. An, B. W. et al. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett. 16, 471–478 (2016).

    Article  CAS  Google Scholar 

  55. Kim, J. et al. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 29, 1700217 (2017).

    Article  Google Scholar 

  56. Majid, A. Electroceuticals (Springer, 2017).

  57. Famm, K., Litt, B., Tracey, K. J., Boyden, E. S. & Slaoui, M. A jump-start for electroceuticals. Nature 496, 159–161 (2013).

    Article  CAS  Google Scholar 

  58. Osborn, L. E. et al. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 3, eaat3818 (2018).

    Article  Google Scholar 

  59. Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    Article  CAS  Google Scholar 

  60. Hwang, X. et al. Epidermal radio frequency electronics for wireless power transfer. Microsyst. Nanoeng. 2, 16052 (2016).

    Article  Google Scholar 

  61. Kim, J. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2, e1600418 (2016).

    Article  Google Scholar 

  62. Xu, S. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013).

    Article  Google Scholar 

  63. Fu, K. K., Cheng, J., Li, T. & Hu, L. Flexible batteries: from mechanics to devices. ACS Energy Lett. 1, 1065–1079 (2016).

    Article  CAS  Google Scholar 

  64. Lanata, A., Guidi, A., Baragli, P., Valenza, G. & Scilingo, E. P. A novel algorithm for movement artifact removal in ECG signals acquired from wearable systems applied to horses. PLoS One 10, e0140783 (2015).

    Article  Google Scholar 

  65. Jarchi, D. & Casson, A. J. Description of a database containing wrist PPG signals recorded during physical exercise with both accelerometer and gyroscope measures of motion. Data (Basel) 2, (1 (2017).

    Google Scholar 

  66. Norton, J. J. S. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc. Natl Acad. Sci. USA 112, 3920–3925 (2015).

    Article  CAS  Google Scholar 

  67. Debener, S., Emkes, R., De Vos, M. & Bleichner, M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci. Rep. 5, 16743 (2015).

    Article  CAS  Google Scholar 

  68. Becker, D. E. Fundamentals of electrocardiography interpretation. Anesth. Prog. 53, 53–63, quiz 64 (2006).

  69. Liu, Y. et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2, e1601185 (2016).

    Article  Google Scholar 

  70. Nazmi, N. et al. A review of classification techniques of EMG signals during isotonic and isometric contractions. Sensors (Basel) 16, (1304 (2016).

    Google Scholar 

  71. Lotharius, J. & Brundin, P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3, 932–942 (2002).

    Article  CAS  Google Scholar 

  72. Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014).

    Article  CAS  Google Scholar 

  73. Araci, I. E., Su, B., Quake, S. R. & Mandel, Y. An implantable microfluidic device for self-monitoring of intraocular pressure. Nat. Med. 20, 1074–1078 (2014).

    Article  CAS  Google Scholar 

  74. Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017).

    Article  Google Scholar 

  75. Yokota, T. et al. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl Acad. Sci. USA 112, 14533–14538 (2015).

    Article  CAS  Google Scholar 

  76. Jia, W. et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 6553–6560 (2013).

    Article  CAS  Google Scholar 

  77. Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Lee, H. Kawasaki and T. Ebihara for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takao Someya or Masayuki Amagai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Someya, T., Amagai, M. Toward a new generation of smart skins. Nat Biotechnol 37, 382–388 (2019). https://doi.org/10.1038/s41587-019-0079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-019-0079-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing