Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An asymmetric fission island driven by shell effects in light fragments

Abstract

Nuclear fission leads to the splitting of a nucleus into two fragments1,2. Studying the distribution of the masses and charges of the fragments is essential for establishing the fission mechanisms and refining the theoretical models3,4. It has value for our understanding of r-process nucleosynthesis5,6, in which the fission of nuclei with extreme neutron-to-proton ratios is pivotal for determining astrophysical abundances and understanding the origin of the elements7 and for energy applications8,9. Although the asymmetric distribution of fragments is well understood for actinides (elements in the periodic table with atomic numbers from 89 to 103) based on shell effects10, symmetric fission governs the scission process for lighter elements. However, unexpected asymmetric splits have been observed in neutron-deficient exotic nuclei11, prompting extensive further investigations. Here we present measurements of the charge distributions of fission fragments for 100 exotic fissioning systems, 75 of which have never been measured, and establish a connection between the neutron-deficient sub-lead region and the well-understood actinide region. These new data comprehensively map the asymmetric fission island and provide clear evidence for the role played by the deformed Z = 36 proton shell of the light fragment in the fission of sub-lead nuclei. Our dataset will help constrain the fission models used to estimate the fission properties of nuclei with extreme neutron-to-proton ratios for which experimental data are unavailable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Particle identification plot of the secondary beam.
Fig. 2: Map of the evolution of asymmetric fission.
Fig. 3: Charge yields of thallium and lead isotopes.
Fig. 4: Evidence of Z = 36 stabilization of the light fragments.
Fig. 5: Theoretical calculations and comparison with experimental data.

Similar content being viewed by others

Data availability

The data used in this study originate from the s455 GSI experiment. The raw data are available on request. The source data for Fig. 2, which displays the asymmetric parameter, are provided in Extended Data Tables 1 and 2.

Code availability

The main analysis and results presented in this paper were performed using the nptool framework. The analysis codes used to generate these results are available in the s455 project of nptool at https://gitlab.in2p3.fr/np/nptool/-/tree/NPTool.2.dev/Projects/s455?ref_type=heads.

References

  1. Meitner, L. & Frisch, O. R. Products of the fission of the uranium nucleus. Nature 143, 239 (1939).

    Article  CAS  ADS  Google Scholar 

  2. Bohr, N. & Wheeler, J. A. The mechanism of nuclear fission. Phys. Rev. 56, 426–450 (1939).

    Article  CAS  ADS  Google Scholar 

  3. Scamps, G. & Simenel, C. Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides. Nature 564, 382–385 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Bender, M. et al. Future of nuclear fission theory. J. Phys. G: Nucl. Part. Phys. 47, 113002 (2020).

    Article  CAS  Google Scholar 

  5. Eichler, M. et al. The role of fission in neutron star mergers and its impact on the r-process peaks. Astrophys. J. 808, 30 (2015).

    Article  ADS  Google Scholar 

  6. Yong, D. et al. r-process elements from magnetorotational hypernovae. Nature 595, 223–226 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Goriely, S. et al. New fission fragment distributions and r-process origin of the rare-earth elements. Phys. Rev. Lett. 111, 242502 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Lemaire, M., Vaglio-Gaudard, C., Lyoussi, A. & Reynard-Carette, C. For a better estimation of gamma heating in nuclear material-testing reactors and associated devices: status and work plan from calculation methods to nuclear data. J. Nucl. Sci. Technol. 52, 1093–1101 (2015).

    Article  CAS  Google Scholar 

  9. Nichols, A. L. et al. Improving fission-product decay data for reactor applications. I. Decay heat. Eur. Phys. J. A 59, 78 (2023).

    Article  CAS  ADS  Google Scholar 

  10. Strutinsky, V. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95, 420–442 (1967).

    Article  ADS  Google Scholar 

  11. Andreyev, A. N. et al. New type of asymmetric fission in proton-rich nuclei. Phys. Rev. Lett. 105, 252502 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Itkis, M., Vardaci, E., Itkis, I., Knyazheva, G. & Kozulin, E. Fusion and fission of heavy and superheavy nuclei (experiment). Nucl. Phys. A 944, 204–237 (2015).

    Article  CAS  ADS  Google Scholar 

  13. An, F. et al. Evolution of the reactor antineutrino flux and spectrum at Daya Bay. Phys. Rev. Lett. 118, 251801 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Schmidt, K.-H., Steinhauser, S. & Bockstiegel, C. Relativistic radioactive beams: a new access to nuclear-fission studies. Nucl. Phys. A 665, 221–267 (2000).

    Article  ADS  Google Scholar 

  15. Chatillon, A. et al. Evidence for a new compact symmetric fission mode in light thorium isotopes. Phys. Rev. Lett. 124, 202502 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Itkis, M. G., Okolovich, V. N. & Smirenkin, G. N. Symmetric and asymmetric fission of nuclei lighter than radium. Nucl. Phys. A 502, 243–260 (1989).

    Article  ADS  Google Scholar 

  17. Ghys, L. et al. Evolution of fission-fragment mass distributions in the neutron-deficient lead region. Phys. Rev. C 90, 041301 (2014).

    Article  CAS  ADS  Google Scholar 

  18. Andel, B. et al. β-delayed fission of isomers in Bi 188. Phys. Rev. C 102, 014319 (2020).

    Article  CAS  ADS  Google Scholar 

  19. Nishio, K. et al. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm. Phys. Lett. B 748, 89–94 (2015).

    Article  CAS  ADS  Google Scholar 

  20. Prasad, E. et al. Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion. Phys. Rev. C 91, 064605 (2015).

    Article  ADS  Google Scholar 

  21. Tsekhanovich, I. et al. Observation of the competing fission modes in 178Pt. Phys. Lett. B 790, 583–588 (2019).

    Article  CAS  ADS  Google Scholar 

  22. Gupta, S. et al. Asymmetric fission around lead: the case of 198Po. Phys. Rev. C 100, 064608 (2019).

    Article  CAS  ADS  Google Scholar 

  23. Gupta, S. et al. Competing asymmetric fusion–fission and quasifission in neutron-deficient sub-lead nuclei. Phys. Lett. B 803, 135297 (2020).

    Article  CAS  Google Scholar 

  24. Prasad, E. et al. Systematics of the mass-asymmetric fission of excited nuclei from 176Os to 206Pb. Phys. Lett. B 811, 135941 (2020).

    Article  CAS  Google Scholar 

  25. Bogachev, A. A. et al. Asymmetric and symmetric fission of excited nuclei of 180,190Hg and 184,192,202Pb formed in the reactions with 36Ar and 40,48Ca ions. Phys. Rev. C 104, 024623 (2021).

    Article  CAS  ADS  Google Scholar 

  26. Swinton-Bland, B. et al. Multi-modal mass-asymmetric fission of 178Pt from simultaneous mass-kinetic energy fitting. Phys. Lett. B 837, 137655 (2023).

    Article  CAS  Google Scholar 

  27. Schmitt, C. et al. Experimental evidence for common driving effects in low-energy fission from sublead to actinides. Phys. Rev. Lett. 126, 132502 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Mahata, K. et al. Evidence for the general dominance of proton shells in low-energy fission. Phys. Lett. B 825, 136859 (2022).

    Article  CAS  Google Scholar 

  29. Ichikawa, T., Iwamoto, A., Möller, P. & Sierk, A. J. Contrasting fission potential-energy structure of actinides and mercury isotopes. Phys. Rev. C 86, 024610 (2012).

    Article  ADS  Google Scholar 

  30. Ichikawa, T. & Möller, P. The microscopic mechanism behind the fission-barrier asymmetry (II): The rare-earth region 50 < Z < 82 and 82 < N < 126. Phys. Lett. B 789, 679–684 (2019).

    Article  CAS  ADS  Google Scholar 

  31. Möller, P. & Randrup, J. Calculated fission-fragment yield systematics in the region 74 < Z < 94 and 90 < N < 150. Phys. Rev. C 91, 044316 (2015).

    Article  ADS  Google Scholar 

  32. Andreev, A. V., Adamian, G. G. & Antonenko, N. V. Mass distributions for induced fission of different Hg isotopes. Phys. Rev. C 86, 044315 (2012).

    Article  ADS  Google Scholar 

  33. Andreev, A. V., Adamian, G. G., Antonenko, N. V. & Andreyev, A. N. Isospin dependence of mass-distribution shape of fission fragments of Hg isotopes. Phys. Rev. C 88, 047604 (2013).

    Article  ADS  Google Scholar 

  34. Panebianco, S. et al. Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes. Phys. Rev. C 86, 064601 (2012).

    Article  ADS  Google Scholar 

  35. Warda, M., Staszczak, A. & Nazarewicz, W. Fission modes of mercury isotopes. Phys. Rev. C 86, 024601 (2012).

    Article  ADS  Google Scholar 

  36. McDonnell, J. D., Nazarewicz, W., Sheikh, J. A., Staszczak, A. & Warda, M. Excitation-energy dependence of fission in the mercury region. Phys. Rev. C 90, 021302 (2014).

    Article  ADS  Google Scholar 

  37. Scamps, G. & Simenel, C. Effect of shell structure on the fission of sub-lead nuclei. Phys. Rev. C 100, 041602 (2019).

    Article  CAS  ADS  Google Scholar 

  38. Geissel, H. et al. The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 70, 286–297 (1992).

    Article  ADS  Google Scholar 

  39. Chatillon, A. et al. Experimental study of nuclear fission along the thorium isotopic chain: from asymmetric to symmetric fission. Phys. Rev. C 99, 054628 (2019).

    Article  CAS  ADS  Google Scholar 

  40. Martin, J.-F. et al. Fission-fragment yields and prompt-neutron multiplicity for Coulomb-induced fission of 234,235U and 237,238Np. Phys. Rev. C 104, 044602 (2021).

    Article  CAS  ADS  Google Scholar 

  41. Pellereau, E. et al. Accurate isotopic fission yields of electromagnetically induced fission of 238U measured in inverse kinematics at relativistic energies. Phys. Rev. C 95, 054603 (2017).

    Article  ADS  Google Scholar 

  42. Schmidt, K.-H., Jurado, B., Amouroux, C. & Schmitt, C. General description of fission observables: GEF model code. Nucl. Data Sheets 131, 107–221 (2016).

    Article  CAS  ADS  Google Scholar 

  43. Hilaire, S. & Girod, M. Large-scale mean-field calculations from proton to neutron drip lines using the D1S Gogny force. Eur. Phys. J. A 33, 237–241 (2007).

    Article  CAS  ADS  Google Scholar 

  44. Berger, J., Girod, M. & Gogny, D. Constrained Hartree-Fock and beyond. Nucl. Phys. A 502, 85–104 (1989).

    Article  ADS  Google Scholar 

  45. Berger, J., Girod, M. & Gogny, D. Time-dependent quantum collective dynamics applied to nuclear fission. Comput. Phys. Commun. 63, 365–374 (1991).

    Article  CAS  ADS  Google Scholar 

  46. Bernard, R., Simenel, C. & Blanchon, G. Hartree-Fock-Bogoliubov study of quantum shell effects on the path to fission in 180Hg, 236U and 256Fm. Eur. Phys. J. A 59, 51 (2023).

    Article  CAS  ADS  Google Scholar 

  47. Bernard, R. N., Simenel, C., Blanchon, G., Lau, N. T. & McGlynn, P. Fission of 180Hg and 264Fm: a comparative study. Eur. Phys. J. A 60, 192 (2024).

    Article  CAS  Google Scholar 

  48. Verriere, M. & Regnier, D. The time-dependent generator coordinate method in nuclear physics. Front. Phys. 8, 233 (2020).

    Article  Google Scholar 

  49. Verriere, M., Schunck, N. & Regnier, D. Microscopic calculation of fission product yields with particle-number projection. Phys. Rev. C 103, 054602 (2021).

    Article  CAS  ADS  Google Scholar 

  50. Lau, N.-W. T., Bernard, R. N. & Simenel, C. Smoothing of one- and two-dimensional discontinuities in potential energy surfaces. Phys. Rev. C 105, 034617 (2022).

    Article  CAS  ADS  Google Scholar 

  51. Lasseri, R.-D., Regnier, D., Frosini, M., Verriere, M. & Schunck, N. Generative deep-learning reveals collective variables of fermionic systems. Phys. Rev. C 109, 064612 (2024).

    Article  CAS  Google Scholar 

  52. Carpentier, P., Pillet, N., Lacroix, D., Dubray, N. & Regnier, D. Construction of continuous collective energy landscapes for large amplitude nuclear many-body problems. Phys. Rev. Lett. 133, 152501 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Christie, W. et al. A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. A 255, 466–476 (1987).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The results presented here are based on experiment S455, which was performed at the beamline infrastructure Cave C at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany, in the context of FAIR Phase-0. L.M.F. acknowledge support from TU Darmstadt-GSI through a cooperation contract. We would like to thank the CEA, DAM and DIF for providing us with access to the supercalculator resources, which enabled us to carry out the microscopic calculations. The JSI researchers are supported by the Slovenian Research and Innovation Agency (Grant No. I0-E005). J.P. acknowledges support from the Institute for Basic Science (Grant No. IBS-R031-D1). This work has been partly supported by the Spanish Funding Agency for Research (AEI; Projects PGC2018-099746-B-C21, PGC2018-099746-B-C22, PID2021-125771NB-C21, PID2021-125771NB-C22 and PID2022-140162-I00). A.G.-G and G.G.-J. thank AEI for support (Predoctoral Grant Nos. PRE2018-085934 and PRE2019-087415). J.L.R.-S. is thankful to AEI for support from the Ramon y Cajal programme (Grant No. RYC2021-031989) and thankful for a Postdoctoral Fellowship (Grant No. ED481D-2021/018) from the Regional Government of Galicia. This work was supported by the Royal Society and the UK STFC (Grant Nos. ST/L005727/1, ST/P003885/1 and ST/V001035/1). This work was supported by the Portuguese FCT under EXPL/FIS-NUC/0364/2021. R.G. acknowledges support by the Excellence Cluster ORIGINS from the DFG (Excellence Strategy EXC-2094-390783311).

Author information

Authors and Affiliations

Authors

Contributions

J.T. was the spokesperson for the experiment. The design and installation of the present experiment was performed by a large number of the R3B-SOFIA collaboration members led by J.T. and in particular P.M., A. Chatillon, L. Audouin, B. Laurent, A.O., F. Wamers, L. Atar, H.A.-P., F.A., P.A., G.A., T.A., J.B., K.B., L.B., T.B., C.C., E.C., J.C., A. Corsi, D.C.-G., A. Cvetinović, E. De F., T.D., M.F., L.M.F, D.G, G.G-J., I.G., E.I.G., R.G., B.G., K.G., A.G.-G., A.-L.H., M. Heil, T.H., M. Holl, A. Horvat, A.J., D.M., T.J., L.J., B. Jonson, B. Jurado, N.K.-N., A.K.-H., O.A.K., P.K., D. Körper, T.K., I.L., J.P., S. Paschalis, M.P., A.R., H.-B.R. J.-L.R., L.R., D. Rossi, H. Scheit, H. Simon, S.S.-D., A.S., Y.L.S., C. Sürder, O.T., I.T., B.V., F. Wienholtz, H.W., J.Z. and M.Z. The data acquisition system was led by A. Chatillon, H.T.J., B. Löher and H.T.T. The online analysis was led by A. Chatillon, P.M. and J.-L.R. J.T., A. Chatillon, P.M. G.B., L. Audouin, A. Heinz, K.B., I.G., L.J., D. Rossi, A.G.-G., G.G.-J., A.S., L. Atar, D.M., E.N., S.M.M., L.R., H.A.-P., V.P., D.G., A.O., M. Holl, Y.L.S., E. De F., N.S.M., S. Paschalis, M.P., R.T., M.T., S. Pirrone, P. Russotto, G.P., L.P., E.I.G., E.V.P., B.G., S.V. and J.V. checked the quality of the captured data. H.W., E.H., E.K., N.K., C.H., S. Pietri, C. Scheidenberger, I.M., F.A., R.K., J.Z., D. Kostyleva, P. Roy and Y.K.T. were in charge of the operation of the FRS. The main offline data analysis and simulation were undertaken by P.M. The microscopic theoretical calculations were led by R.N.B., N.D., N.P., D. Regnier and P.C. All authors read, commented on and approved the manuscript.

Corresponding author

Correspondence to P. Morfouace.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Mark Stoyer, Jonathan Wilson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Schematic view of the experimental setup and particle identification plots.

a, Schematic view of the FRagment Separator (FRS) together with the experimental apparatus at R3B (figure generated using Inkscape on Linux). b, Beam identification plot for FRS settings including 200At in the cocktail beam. The projections give the charge Z and mass-to-charge ratio A/Q resolution for the charge Z = 85.

Extended Data Fig. 2 Excitation energy distribution and example of Gaussian fit of the charge yields.

ac, Example of three excitation energy distributions for lower-, middle- and higher Z values. The dashed lines correspond to the fission barrier listed in Extended Data Tables 3 and 4. dg, Three-Gaussian fit of the charge yields for a selection of fissioning systems.

Extended Data Fig. 3 Experimental measured charge distribution and associated yield.

a, Sum of both fragment charge Z = Z1 + Z2 in blue when the fission is induced in the lead targets and in red when it is induced in the carbon target. b, Atomic charge distribution after fission of 190Pb induced in the lead cathodes (blue) and the carbon cathode (red) with the condition Z = 82. c, Atomic charge distribution from the electromagnetic induced fission where the fragmentation/fission contribution has been subtracted with the condition Z = 82. d, Final charge yield for the Coulomb-induced fission of 190Pb. The error bars are depicted.

Extended Data Fig. 4 Measured charge yields.

Experimental measured charge yields from iridium to thorium isotopes.

Extended Data Fig. 5 Calculated shell effects the the fragments.

80Kr shell effects at the Fermi level for neutrons (a) and protons (b). The white dots trace the light prefragment of 174Pt before scission. 94Mo shell effects at the Fermi level for neutrons (c) and protons (d). The white dots trace the heavy prefragment of 174Pt before scission. 82Kr shell effects at the Fermi level for neutrons (e) and protons (f). The white dots trace the light prefragment of 190Pb before scission. 108Pd shell effects at the Fermi level for neutrons (g) and protons (h). The white dots trace the heavy prefragment of 190Pb before scission.

Extended Data Fig. 6 Asymmetric fission map using RMS of the charge distribution.

Experimental asymmetry using the RMS of the charge distribution as metric listed in Extended Data Tables 1 and 2.

Extended Data Table 1 List of studied nuclei from Ir to Bi isotopes, with the percentage of Coulomb-induced fission events, the asymmetry parameter value from equation (1) for the experimental data \({\boldsymbol{\mathcal{A}}}_{{\boldsymbol{e}}{\boldsymbol{x}}{\boldsymbol{p}}}\) and for GEF \({\boldsymbol{\mathcal{A}}}_{{\boldsymbol{GEF}}}\), the asymmetry parameter value from the Gaussian-fit method \({\boldsymbol{\mathcal{A}}}_{{\boldsymbol{gauss}}}\), the standard deviation σZ of the experimental charge distribution, and the light charge corresponding to the highest yield from GEF calculation \({{\boldsymbol{Z}}}_{{\boldsymbol{L}}}^{{\boldsymbol{GEF}}}\)
Extended Data Table 2 List of studied nuclei from Po to Th isotopes, with the percentage of Coulomb-induced fission events, the asymmetry parameter value from equation (1) for the experimental data \({\boldsymbol{\mathcal{A}}}_{{\boldsymbol{e}}{\boldsymbol{x}}{\boldsymbol{p}}}\) and for GEF \({\boldsymbol{\mathcal{A}}}_{{\boldsymbol{GEF}}}\), the asymmetry parameter value from the Gaussian-fit method \({\boldsymbol{\mathcal{A}}}_{{\boldsymbol{gauss}}}\), the standard deviation σZ of the experimental charge distribution, and the light charge corresponding to the highest yield from GEF calculation \({{\boldsymbol{Z}}}_{{\boldsymbol{L}}}^{{\boldsymbol{GEF}}}\)
Extended Data Table 3 List of studied nuclei from Ir to Bi isotopes, with the fission barrier estimated by using the GEF code together with the average mean excitation energy of the fissioning system above the fission barrier, the standard deviation of the excitation energy distribution, and the percentage of second chance fission
Extended Data Table 4 List of studied nuclei from Po to Th isotopes, with the fission barrier estimated by using the GEF code together with the average mean excitation energy of the fissioning system above the fission barrier, the standard deviation of the excitation energy distribution, and the percentage of second chance fission

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morfouace, P., Taieb, J., Chatillon, A. et al. An asymmetric fission island driven by shell effects in light fragments. Nature 641, 339–344 (2025). https://doi.org/10.1038/s41586-025-08882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-08882-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing