Abstract
α-FA1-xCsxPbI3 is a promising absorber material for efficient and stable perovskite solar cells (PSCs)1,2. However, the most efficient α-FA1-xCsxPbI3 PSCs require the inclusion of methylammonium chloride (MACl) additive3,4, which generates volatile organic residues (i.e., MA) that limit device stability at elevated temperatures5. To date, the highest certified power-conversion efficiency (PCE) of α-FA1-xCsxPbI3 PSCs without MACl was only ~24% (ref.6,7), and has yet to exhibit any stability advantages. Here, we identify interfacial contact loss caused by the Cs+ accumulation for the conventional α-FA1-xCsxPbI3 PSCs, which deteriorates the device performance and stability. Through in-situ GIWAXS analysis and DFT calculations, we demonstrate an intermediate phase-assisted crystallization pathway enabled by acetate surface coordination to fabricate high-quality α-FA1-xCsxPbI3 film, without using MA-additive. We herein report a certified stabilized power output (SPO) efficiency of 25.94% and a reverse-scanning PCE of 26.64% for α-FA1-xCsxPbI3 PSCs, exhibiting negligible contact losses and enhanced operational stability. The devices retain >95% of their initial PCEs after over 2,000 hours operating at maximum power point under 1 sun, 85 °C, and 60% relative humidity (ISOS-L-3).
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Author information
Authors and Affiliations
Corresponding authors
Supplementary information
Supplementary Information
Supplementary Notes 1–11, including Supplementary Figs 1–31, Supplementary Tables 1 and 2 and Supplementary references.
Rights and permissions
About this article
Cite this article
Li, S., Jiang, Y., Xu, J. et al. High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics. Nature (2024). https://doi.org/10.1038/s41586-024-08103-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41586-024-08103-7