Abstract
One issue that always strands the scaling-up development of perovskite photovoltaics is the significant efficiency drop when enlarging the device area, which is caused by the inhomogeneous distribution of defected sites1-3. In the narrow band gap formamidinium lead iodide (FAPbI3), the native impurities of PbI2 and δ-FAPbI3 non-perovskite could induce unfavored non-radiative recombination, as well as inferior charge transport and extraction 4,5.Here, we develop an impurity-healing interface engineering strategy to well address the issue both in small-area solar cell and large-scale submodule. With the introduction of a functional cation, 2-(1-cyclohexenyl)ethyl ammonium, two-dimensional (2D) perovskite with high mobility is rationally constructed on FAPbI3 to horizontally cover the film surface and vertically penetrate to the grain boundaries of 3D perovskites. Such unique configuration not only comprehensively transforms the PbI2 and δ-FAPbI3 impurities into stable 2D perovskite and realize a uniform defect passivation, but also provides interconnecting channels for efficient carrier transport. As a result, the FAPbI3-based small-area (0.085 cm2) solar cells achieve a champion efficiency over 25.86% with a notably high fill factor (FF) of 86.16%. More encouragingly, the fabricated submodules with the aperture area of 715.1 cm2 obtain a certified record efficiency of 22.46% with a good FF of 81.21%, showcasing the feasibility and effectualness of the impurity-healing interface engineering for scaling-up promotion with well-preserved photovoltaic performance.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Author information
Authors and Affiliations
Corresponding authors
Supplementary information
Supplementary Information
This file contains Supplementary Figures 1-37 Supplementary Table 1 Supplementary Notes 1-4 and Supplementary References.
Rights and permissions
About this article
Cite this article
Wang, H., Su, S., Chen, Y. et al. Impurity-healing interface engineering for efficient perovskite submodules. Nature (2024). https://doi.org/10.1038/s41586-024-08073-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41586-024-08073-w