Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-axis twisting using Floquet-engineered XYZ spin models with polar molecules

Abstract

Polar molecules confined in an optical lattice are a versatile platform to explore spin-motion dynamics based on strong, long-range dipolar interactions1,2. The precise tunability3 of Ising and spin-exchange interactions with both microwave and d.c. electric fields makes the molecular system particularly suitable for engineering complex many-body dynamics4,5,6. Here we used Floquet engineering7 to realize new quantum many-body systems of polar molecules. Using a spin encoded in the two lowest rotational states of ultracold 40K87Rb molecules, we mutually validated XXZ spin models tuned by a Floquet microwave pulse sequence against those tuned by a d.c. electric field through observations of Ramsey contrast dynamics. This validation sets the stage for the realization of Hamiltonians inaccessible with static fields. In particular, we observed two-axis twisting8 mean-field dynamics, generated by a Floquet-engineered XYZ model using itinerant molecules in two-dimensional layers. In the future, Floquet-engineered Hamiltonians could generate entangled states for molecule-based precision measurement9 or could take advantage of the rich molecular structure for quantum simulation of multi-level systems10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 40K87Rb Hamiltonian engineering.
Fig. 2: Benchmarking XXZ spin dynamics.
Fig. 3: Engineering OAT and TAT.
Fig. 4: TAT mean-field dynamics.

Similar content being viewed by others

Data availability

Data are available from the corresponding authors upon request.

Code availability

Code is available from the corresponding authors upon request.

References

  1. Langen, T., Valtolina, G., Wang, D. & Ye, J. Quantum state manipulation and science of ultracold molecules. Nat. Phys. 20, 702–712 (2024).

    Article  CAS  Google Scholar 

  2. Cornish, S. L., Tarbutt, M. R. & Hazzard, K. R. A. Quantum computation and quantum simulation with ultracold molecules. Nat. Phys. 20, 730–740 (2024).

    Article  CAS  Google Scholar 

  3. Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article  ADS  PubMed  Google Scholar 

  4. Li, J.-R. et al. Tunable itinerant spin dynamics with polar molecules. Nature 614, 70–74 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64–69 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Carroll, A. N. et al. Observation of coherent generalized t-J spin dynamics with tunable dipolar interactions. Preprint at https://doi.org/10.48550/arXiv.2404.18916 (2024).

  7. Choi, J. et al. Robust dynamic Hamiltonian engineering of many-body spin systems. Phys. Rev. X 10, 031002 (2020).

    CAS  Google Scholar 

  8. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Sundar, B., Gadway, B. & Hazzard, K. R. A. Synthetic dimensions in ultracold polar molecules. Sci. Rep. 8, 3422 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, H. et al. Robust Hamiltonian Engineering for Interacting Qudit Systems. Phys. Rev. X 14, 031017 (2024).

  12. Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Viola, L., Knill, E. & Lloyd, S. Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Souza, A. M., Álvarez, G. A. & Suter, D. Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106, 240501 (2011).

    Article  ADS  PubMed  Google Scholar 

  15. Zhou, H. et al. Robust higher-order Hamiltonian engineering for quantum sensing with strongly interacting systems. Phys. Rev. Lett. 131, 220803 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Weitenberg, C. & Simonet, J. Tailoring quantum gases by Floquet engineering. Nat. Phys. 17, 1342–1348 (2021).

    Article  CAS  Google Scholar 

  17. Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kwan, J. et al. Realization of 1D anyons with arbitrary statistical phase. Preprint at https://doi.org/10.48550/arxiv.2306.01737 (2023).

  19. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Geier, S. et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374, 1149–1152 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Martin, L. S. et al. Controlling local thermalization dynamics in a Floquet-engineered dipolar ensemble. Phys. Rev. Lett. 130, 210403 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Schuster, T. et al. Floquet engineering ultracold polar molecules to simulate topological insulators. Phys. Rev. A 103, 063322 (2021).

    Article  ADS  CAS  Google Scholar 

  24. Zhang, X., Hu, Z. & Liu, Y.-C. Fast generation of GHZ-like states using collective-spin XYZ model. Phys. Rev. Lett. 132, 113402 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Liu, Y. C., Xu, Z. F., Jin, G. R. & You, L. Spin squeezing: transforming one-axis twisting into two-axis twisting. Phys. Rev. Lett. 107, 013601 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954).

    Article  ADS  CAS  Google Scholar 

  27. Waugh, J. S., Huber, L. M. & Haeberlen, U. Approach to high-resolution NMR in solids. Phys. Rev. Lett. 20, 180–182 (1968).

    Article  ADS  CAS  Google Scholar 

  28. Peng, P., Yin, C., Huang, X., Ramanathan, C. & Cappellaro, P. Floquet prethermalization in dipolar spin chains. Nat. Phys. 17, 444–447 (2021).

    Article  CAS  Google Scholar 

  29. Nguyen, L. B. et al. Programmable Heisenberg interactions between Floquet qubits. Nat. Phys. https://doi.org/10.1038/s41567-023-02326-7 (2024).

  30. Scholl, P. et al. Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRX Quantum 3, 020303 (2022).

    Article  ADS  Google Scholar 

  31. Zu, C. et al. Emergent hydrodynamics in a strongly interacting dipolar spin ensemble. Nature 597, 45–50 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Morong, W. et al. Engineering dynamically decoupled quantum simulations with trapped ions. PRX Quantum 4, 010334 (2023).

    Article  ADS  Google Scholar 

  33. Chotia, A. et al. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108, 080405 (2012).

    Article  ADS  PubMed  Google Scholar 

  34. Moses, S. A. et al. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350, 659–662 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Picard, L. R. B., Patenotte, G. E., Park, A. J., Gebretsadkan, S. F. & Ni, K.-K. Site-selective preparation and multi-state readout of molecules in optical tweezers. PRX Quantum 5, 020344 (2024).

    Article  ADS  Google Scholar 

  36. Ruttley, D. K., Guttridge, A., Hepworth, T. R. & Cornish, S. L. Enhanced quantum control of individual ultracold molecules using optical tweezer arrays. PRX Quantum 5, 020333 (2024).

    Article  ADS  Google Scholar 

  37. Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  38. Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science https://doi.org/10.1126/science.adf4272 (2023).

  39. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

    Article  CAS  Google Scholar 

  41. Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Tobias, W. G. et al. Reactions between layer-resolved molecules mediated by dipolar spin exchange. Science 375, 1299–1303 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Seeßelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).

    Article  ADS  PubMed  Google Scholar 

  45. Park, A. J. et al. Extended rotational coherence of polar molecules in an elliptically polarized trap. Phys. Rev. Lett. 131, 183401 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Gregory, P. D. et al. Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules. Nat. Phys. https://doi.org/10.1038/s41567-023-02328-5 (2024).

  48. Brennen, G. K., Micheli, A. & Zoller, P. Designing spin-1 lattice models using polar molecules. New J. Phys. 9, 138 (2007).

    Article  ADS  Google Scholar 

  49. Ospelkaus, S. et al. Controlling the hyperfine state of Rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Hazzard, K. R. A. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).

    Article  ADS  PubMed  Google Scholar 

  51. Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).

    Article  Google Scholar 

  52. Luo, C. et al. Hamiltonian engineering of collective XYZ spin models in an optical cavity: from one-axis twisting to two-axis counter twisting models. Preprint at https://doi.org/10.48550/arxiv.2402.19429 (2024).

  53. Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

    Article  ADS  Google Scholar 

  54. Haeberlen, U. & Waugh, J. S. Coherent averaging effects in magnetic resonance. Phys. Rev. 175, 453–467 (1968).

    Article  ADS  CAS  Google Scholar 

  55. Gorshkov, A. V. et al. Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A 84, 033619 (2011).

    Article  ADS  Google Scholar 

  56. de Paz, A. et al. Nonequilibrium quantum magnetism in a dipolar lattice gas. Phys. Rev. Lett. 111, 185305 (2013).

    Article  ADS  PubMed  Google Scholar 

  57. Bilitewski, T. et al. Dynamical generation of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett. 126, 113401 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Tyler, M., Zhou, H., Martin, L. S., Leitao, N. & Lukin, M. D. Higher-order methods for Hamiltonian engineering pulse sequence design. Phys. Rev. A 108, 062602 (2023).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  59. Signoles, A. et al. Glassy dynamics in a disordered Heisenberg quantum spin system. Phys. Rev. X 11, 011011 (2021).

    CAS  Google Scholar 

  60. Borregaard, J., Davis, E. J., Bentsen, G. S., Schleier-Smith, M. H. & Sørensen, A. S. One- and two-axis squeezing of atomic ensembles in optical cavities. New J. Phys. 19, 093021 (2017).

    Article  ADS  Google Scholar 

  61. Kajtoch, D. & Witkowska, E. Quantum dynamics generated by the two-axis countertwisting Hamiltonian. Phys. Rev. A 92, 013623 (2015).

    Article  ADS  Google Scholar 

  62. Muñoz-Arias, M. H., Deutsch, I. H. & Poggi, P. M. Phase-space geometry and optimal state preparation in quantum metrology with collective spins. PRX Quantum 4, 020314 (2023).

    Article  ADS  Google Scholar 

  63. Hald, J., Sørensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999).

    Article  ADS  Google Scholar 

  64. Geier, S. et al. Time-reversal in a dipolar quantum many-body spin system. Preprint at https://doi.org/10.48550/arxiv.2402.13873 (2024).

  65. Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article  ADS  PubMed  Google Scholar 

  66. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article  ADS  PubMed  Google Scholar 

  68. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Article  ADS  Google Scholar 

  69. Wu, Y., Kolkowitz, S., Puri, S. & Thompson, J. D. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun. 13, 4657 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Griffiths, D. J. Introduction to Quantum Mechanics (Cambridge Univ. Press, 2017).

Download references

Acknowledgements

We thank N. Leitao, L. S. Martin and A. M. Rey for helpful discussions; K. P. Zamarski and F. Vietmeyer for technical contributions; and K. Kim and C. Luo for their comments on the manuscript. The work at JILA and Harvard was jointly supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator. Support is also acknowledged from the National Science Foundation (NSF) Quantum Leap Challenge Institutes (OMA-2016244), the NSF Physics Frontiers Centers (PHY-2317149), the Air Force Office of Scientific Research Multidisciplinary University Research Initiative, the Army Research Office Multidisciplinary University Research Initiative and the National Institute of Standards and Technology. H.G., H.Z. and M.D.L. acknowledge support from the Center for Ultracold Atoms, an NSF Physics Frontiers Center (PHY-2317134) and the NSF (PHY-2012023). C.M. acknowledges support from the Department of Defense through the National Defense Science and Engineering Graduate Fellowship. A.N.C. acknowledges support from the NSF Graduate Research Fellowship Program under grant number DGE 2040434.

Author information

Authors and Affiliations

Authors

Contributions

C.M., A.N.C., J.L., H.H. and J.Y. carried out the experiments and analysed the data. H.G., H.Z. and M.D.L. contributed ideas and methods for Floquet engineering. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Calder Miller or Jun Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Pulse sequences.

Pulse sequences for generating OAT (XY8; A) and TAT (XY8-TAT; B) dynamics are shown using the notation of ref. 7 Narrow (wide) rectangles represent \({\rm{\pi }}/2\) (\({\rm{\pi }}\)) pulses, red (blue) rectangles pulses about the ±X (±Y) axes, and pulses above (below) the line about the + (−) axes. The frame matrix representation shows which axis points along the +Z direction as a function of time, with yellow (green) blocks representing axes originally along the + (−) directions.

Extended Data Fig. 2 Imaging correction.

The measured value of \(\langle {S}_{Z}^{0}\rangle \) is plotted (blue circles) as a function of the value prepared by a microwave pulse. The dashed curve is a fit to the loss model (see Methods). By inverting the model, the data can be corrected for loss during imaging (orange crosses).

Extended Data Fig. 3 Optimizing Floquet pulse timing.

The fitted contrast decay rate Γ is plotted as a function of pulse spacing τ for molecules with initial densities around 1.8(5) × 107 cm−2 in a 3D lattice with parameters set to produce the XXX model. The green triangle is the electric field-tuned data with a KDD pulse sequence and the orange squares are the Floquet data with a DROID-R2D2 pulse sequence. The error bars on the plot are 1 s.e. from stretched exponential fits.

Extended Data Fig. 4 Number loss during TAT Floquet engineering.

The average molecule density is plotted as a function of time as the XY8-TAT pulse sequence is repeatedly applied. The solid curve shows an exponential fit to the data, with time constant 11.2(6) ms.

Extended Data Fig. 5 Single-particle contrast decay rates.

The single-particle contrast decay rate Γ0 is plotted as a function of χ electric field for electric field data (red circles and top axis) and Floquet data (blue squares) for (A) molecules pinned in a deep 3D lattice and (B) itinerant molecules in a 1D lattice. The error bars are 1 s.e. from a linear fit.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, C., Carroll, A.N., Lin, J. et al. Two-axis twisting using Floquet-engineered XYZ spin models with polar molecules. Nature 633, 332–337 (2024). https://doi.org/10.1038/s41586-024-07883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07883-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing