Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gravitational instability in a planet-forming disk

Abstract

The canonical theory for planet formation in circumstellar disks proposes that planets are grown from initially much smaller seeds1,2,3,4,5. The long-considered alternative theory proposes that giant protoplanets can be formed directly from collapsing fragments of vast spiral arms6,7,8,9,10,11 induced by gravitational instability12,13,14—if the disk is gravitationally unstable. For this to be possible, the disk must be massive compared with the central star: a disk-to-star mass ratio of 1:10 is widely held as the rough threshold for triggering gravitational instability, inciting substantial non-Keplerian dynamics and generating prominent spiral arms15,16,17,18. Although estimating disk masses has historically been challenging19,20,21, the motion of the gas can reveal the presence of gravitational instability through its effect on the disk-velocity structure22,23,24. Here we present kinematic evidence of gravitational instability in the disk around AB Aurigae, using deep observations of 13CO and C18O line emission with the Atacama Large Millimeter/submillimeter Array (ALMA). The observed kinematic signals strongly resemble predictions from simulations and analytic modelling. From quantitative comparisons, we infer a disk mass of up to a third of the stellar mass enclosed within 1″ to 5″ on the sky.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global spirals in the AB Aur disk.
Fig. 2: Detection of the GI wiggle in the AB Aur disk.
Fig. 3: The PV wiggle.
Fig. 4: PV wiggle morphology, magnitude and constraints on the AB Aur disk mass.

Similar content being viewed by others

Data availability

All observational data products presented in this work are available through the CANFAR Data Publication Service at https://doi.org/10.11570/24.0087. All simulated data products are available at https://doi.org/10.5281/zenodo.11668694. The raw ALMA data are publicly available at the ALMA archive (https://almascience.nrao.edu/aq/) under project ID 2021.1.00690.S. The raw VLT/SPHERE data are publicly available from the ESO Science Archive Facility (https://archive.eso.org/eso/eso_archive_main.html) under programme 0104.C-0157(B). Source data are provided with this paper.

Code availability

ALMA data-reduction and imaging scripts are available at https://jjspeedie.github.io/guide.2021.1.00690.S. The following Python packages were used in this work: bettermoments (https://github.com/richteague/bettermoments), eddy (https://github.com/richteague/eddy), giggle v0 (https://doi.org/10.5281/zenodo.10205110), PHANTOM (https://github.com/danieljprice/phantom) and MCFOST (https://github.com/cpinte/mcfost).

References

  1. Chiang, E. & Youdin, A. N. Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010).

    Article  ADS  CAS  Google Scholar 

  2. Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017).

    Article  ADS  CAS  Google Scholar 

  3. Ormel, C. W. Formation, Evolution, and Dynamics of Young Solar Systems. Astrophysics and Space Science Library Vol. 445 (eds Pessah, M. & Gressel, O.) 197–228 (Springer, 2017).

  4. Liu, B. & Ji, J. A tale of planet formation: from dust to planets. Res. Astron. Astrophys. 20, 164 (2020).

    Article  ADS  Google Scholar 

  5. Drążkowska, J. et al. Planet formation theory in the era of ALMA and Kepler: from pebbles to exoplanets. In Protostars and Planets VII Vol. 534 of the Astronomical Society of the Pacific Conference Series (eds Inutsuka, S. et al.) 717 (ASP, 2023).

  6. Boss, A. P. Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Gammie, C. F. Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys. J. 553, 174–183 (2001).

    Article  ADS  Google Scholar 

  8. Rice, W. K. M. et al. Substellar companions and isolated planetary-mass objects from protostellar disc fragmentation. Mon. Not. R. Astron. Soc. 346, L36–L40 (2003).

    Article  ADS  CAS  Google Scholar 

  9. Zhu, Z., Hartmann, L., Nelson, R. P. & Gammie, C. F. Challenges in forming planets by gravitational instability: disk irradiation and clump migration, accretion, and tidal destruction. Astrophys. J. 746, 110 (2012).

    Article  ADS  Google Scholar 

  10. Deng, H., Mayer, L. & Helled, R. Formation of intermediate-mass planets via magnetically controlled disk fragmentation. Nat. Astron. 5, 440–444 (2021).

    Article  ADS  Google Scholar 

  11. Cadman, J., Rice, K. & Hall, C. AB Aurigae: possible evidence of planet formation through the gravitational instability. Mon. Not. R. Astron. Soc. 504, 2877–2888 (2021).

    Article  ADS  Google Scholar 

  12. Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs. Mon. Not. R. Astron. Soc. 351, 630–642 (2004).

    Article  ADS  Google Scholar 

  13. Cossins, P., Lodato, G. & Clarke, C. J. Characterizing the gravitational instability in cooling accretion discs. Mon. Not. R. Astron. Soc. 393, 1157–1173 (2009).

    Article  ADS  Google Scholar 

  14. Dipierro, G., Lodato, G., Testi, L. & de Gregorio Monsalvo, I. How to detect the signatures of self-gravitating circumstellar discs with the Atacama Large Millimeter/sub-millimeter Array. Mon. Not. R. Astron. Soc. 444, 1919–1929 (2014).

    Article  ADS  Google Scholar 

  15. Kratter, K. & Lodato, G. Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016).

    Article  ADS  CAS  Google Scholar 

  16. Dong, R., Hall, C., Rice, K. & Chiang, E. Spiral arms in gravitationally unstable protoplanetary disks as imaged in scattered light. Astrophys. J. Lett. 812, L32 (2015).

    Article  ADS  Google Scholar 

  17. Hall, C. et al. Directly observing continuum emission from self-gravitating spiral waves. Mon. Not. R. Astron. Soc. 458, 306–318 (2016).

    Article  ADS  Google Scholar 

  18. Hall, C. et al. The temporal requirements of directly observing self-gravitating spiral waves in protoplanetary disks with ALMA. Astrophys. J. 871, 228 (2019).

    Article  ADS  Google Scholar 

  19. Paneque-Carreño, T. et al. Spiral arms and a massive dust disk with non-Keplerian kinematics: possible evidence for gravitational instability in the disk of Elias 2–27. Astrophys. J. 914, 88 (2021).

    Article  ADS  Google Scholar 

  20. Veronesi, B. et al. A dynamical measurement of the disk mass in Elias 227. Astrophys. J. Lett. 914, L27 (2021).

    Article  ADS  CAS  Google Scholar 

  21. Stapper, L. M. et al. Constraining the gas mass of Herbig disks using CO isotopologues. Astron. Astrophys. 682, A149 (2024).

    Article  CAS  Google Scholar 

  22. Hall, C. et al. Predicting the kinematic evidence of gravitational instability. Astrophys. J. 904, 148 (2020).

    Article  ADS  CAS  Google Scholar 

  23. Longarini, C. et al. Investigating protoplanetary disk cooling through kinematics: analytical GI wiggle. Astrophys. J. Lett. 920, L41 (2021).

    Article  ADS  CAS  Google Scholar 

  24. Terry, J. P. et al. Constraining protoplanetary disc mass using the GI wiggle. Mon. Not. R. Astron. Soc. 510, 1671–1679 (2022).

    Article  ADS  CAS  Google Scholar 

  25. van den Ancker, M. E. et al. HIPPARCOS data on Herbig Ae/Be stars: an evolutionary scenario. Astron. Astrophys. 324, L33–L36 (1997).

    ADS  Google Scholar 

  26. DeWarf, L. E., Sepinsky, J. F., Guinan, E. F., Ribas, I. & Nadalin, I. Intrinsic properties of the young stellar object SU Aurigae. Astrophys. J. 590, 357–367 (2003).

    Article  ADS  Google Scholar 

  27. Beck, T. L. & Bary, J. S. A search for spatially resolved infrared rovibrational molecular hydrogen emission from the disks of young stars. Astrophys. J. 884, 159 (2019).

    Article  ADS  CAS  Google Scholar 

  28. Garufi, A. et al. The SPHERE view of the Taurus star-forming region. Astron. Astrophys. 685, A53 (2024).

    Article  Google Scholar 

  29. Rodríguez, L. F. et al. An ionized outflow from AB Aur, a Herbig Ae Star with a transitional disk. Astrophys. J. Lett. 793, L21 (2014).

    Article  ADS  Google Scholar 

  30. Guzmán-Díaz, J. et al. Homogeneous study of Herbig Ae/Be stars from spectral energy distributions and Gaia EDR3. Astron. Astrophys. 650, A182 (2021).

    Article  Google Scholar 

  31. Gaia Collaboration. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Article  Google Scholar 

  32. Henning, T., Burkert, A., Launhardt, R., Leinert, C. & Stecklum, B. Infrared imaging and millimetre continuum mapping of Herbig Ae/Be and FU Orionis stars. Astron. Astrophys. 336, 565–586 (1998).

    ADS  Google Scholar 

  33. Bouwman, J., de Koter, A., van den Ancker, M. E. & Waters, L. B. F. M. The composition of the circumstellar dust around the Herbig Ae stars AB Aur and HD 163296. Astron. Astrophys. 360, 213–226 (2000).

    ADS  CAS  Google Scholar 

  34. Pérez, L. M. et al. Spiral density waves in a young protoplanetary disk. Science 353, 1519–1521 (2016).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  35. Boccaletti, A. et al. Possible evidence of ongoing planet formation in AB Aurigae. A showcase of the SPHERE/ALMA synergy. Astron. Astrophys. 637, L5 (2020).

    Article  ADS  Google Scholar 

  36. Dong, R., Vorobyov, E., Pavlyuchenkov, Y., Chiang, E. & Liu, H. B. Signatures of gravitational instability in resolved images of protostellar disks. Astrophys. J. 823, 141 (2016).

    Article  ADS  Google Scholar 

  37. Hashimoto, J. et al. Direct imaging of fine structures in giant planet-forming regions of the protoplanetary disk around AB Aurigae. Astrophys. J. Lett. 729, L17 (2011).

    Article  ADS  Google Scholar 

  38. Fukagawa, M. et al. Spiral structure in the circumstellar disk around AB Aurigae. Astrophys. J. Lett. 605, L53–L56 (2004).

    Article  ADS  CAS  Google Scholar 

  39. Lin, S.-Y. et al. Possible molecular spiral arms in the protoplanetary disk of AB Aurigae. Astrophys. J. 645, 1297–1304 (2006).

    Article  ADS  CAS  Google Scholar 

  40. Perrin, M. D. et al. The case of AB Aurigae’s disk in polarized light: is there truly a gap? Astrophys. J. Lett. 707, L132–L136 (2009).

    Article  ADS  Google Scholar 

  41. Teague, R. & Foreman-Mackey, D. A robust method to measure centroids of spectral lines. Res. Notes AAS 2, 173 (2018).

    Article  ADS  Google Scholar 

  42. Teague, R. Statistical uncertainties in moment maps of line emission. Res. Notes AAS 3, 74 (2019).

    Article  ADS  Google Scholar 

  43. Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs — II. The massive disc case. Mon. Not. R. Astron. Soc. 358, 1489–1500 (2005).

    Article  ADS  Google Scholar 

  44. Oppenheimer, B. R. et al. The solar-system-scale disk around AB Aurigae. Astrophys. J. 679, 1574–1581 (2008).

    Article  ADS  CAS  Google Scholar 

  45. Tang, Y.-W. et al. Planet formation in AB Aurigae: imaging of the inner gaseous spirals observed inside the dust cavity. Astrophys. J. 840, 32 (2017).

    Article  ADS  Google Scholar 

  46. Currie, T. et al. Images of embedded Jovian planet formation at a wide separation around AB Aurigae. Nat. Astron. 6, 751–759 (2022).

    Article  ADS  Google Scholar 

  47. Rice, W. K. M., Lodato, G., Pringle, J. E., Armitage, P. J. & Bonnell, I. A. Accelerated planetesimal growth in self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 355, 543–552 (2004).

    Article  ADS  Google Scholar 

  48. Longarini, C., Armitage, P. J., Lodato, G., Price, D. J. & Ceppi, S. The role of the drag force in the gravitational stability of dusty planet-forming disc – II. Numerical simulations. Mon. Not. R. Astron. Soc. 522, 6217–6235 (2023).

    Article  ADS  Google Scholar 

  49. Booth, R. A. & Clarke, C. J. Collision velocity of dust grains in self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 458, 2676–2693 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  50. Rowther, S. et al. The role of drag and gravity on dust concentration in a gravitationally unstable disc. Mon. Not. R. Astron. Soc. 528, 2490–2500 (2024).

    Article  ADS  Google Scholar 

  51. Salyk, C. et al. Measuring protoplanetary disk accretion with H I Pfund β. Astrophys. J. 769, 21 (2013).

    Article  ADS  Google Scholar 

  52. Rice, W. K. M. & Armitage, P. J. Time-dependent models of the structure and stability of self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 396, 2228–2236 (2009).

    Article  ADS  Google Scholar 

  53. Hartmann, L., Calvet, N., Gullbring, E. & D’Alessio, P. Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998).

    Article  ADS  Google Scholar 

  54. Dong, R., Najita, J. R. & Brittain, S. Spiral arms in disks: planets or gravitational instability? Astrophys. J. 862, 103 (2018).

    Article  ADS  Google Scholar 

  55. Sicilia-Aguilar, A., Henning, T. & Hartmann, L. W. Accretion in evolved and transitional disks in CEP OB2: looking for the origin of the inner holes. Astrophys. J. 710, 597–612 (2010).

    Article  ADS  Google Scholar 

  56. Tang, Y. W. et al. The circumstellar disk of AB Aurigae: evidence for envelope accretion at late stages of star formation? Astron. Astrophys. 547, A84 (2012).

    Article  Google Scholar 

  57. Nakajima, T. & Golimowski, D. A. Coronagraphic imaging of pre-main-sequence stars: remnant envelopes of star formation seen in reflection. Astron. J. 109, 1181–1198 (1995).

    Article  ADS  Google Scholar 

  58. Grady, C. A. et al. Hubble Space Telescope space telescope imaging spectrograph coronagraphic imaging of the Herbig AE star AB Aurigae. Astrophys. J. Lett. 523, L151–L154 (1999).

    Article  ADS  Google Scholar 

  59. Rivière-Marichalar, P. et al. AB Aur, a Rosetta stone for studies of planet formation. I. Chemical study of a planet-forming disk. Astron. Astrophys. 642, A32 (2020).

    Article  Google Scholar 

  60. Ediss, G. A. et al. in Proc. 15th International Symposium on Space Terahertz Technology (ed. Narayanan, G.) 181–188 (ISSTT, 2004).

  61. Cornwell, T. J. Multiscale CLEAN deconvolution of radio synthesis images. IEEE J. Sel. Top. Signal Process. 2, 793–801 (2008).

    Article  ADS  Google Scholar 

  62. Kepley, A. A. et al. Auto-multithresh: a general purpose automasking algorithm. Publ. Astron. Soc. Pac. 132, 024505 (2020).

    Article  ADS  Google Scholar 

  63. Leroy, A. K. et al. PHANGS-ALMA data processing and pipeline. Astrophys. J. Suppl. Ser. 255, 19 (2021).

    Article  ADS  CAS  Google Scholar 

  64. Jorsater, S. & van Moorsel, G. A. High resolution neutral hydrogen observations of the barred spiral galaxy NGC 1365. Astron. J. 110, 2037 (1995).

    Article  ADS  Google Scholar 

  65. Czekala, I. et al. Molecules with ALMA at Planet-forming Scales (MAPS). II. CLEAN strategies for synthesizing images of molecular line emission in protoplanetary disks. Astrophys. J. Suppl. Ser. 257, 2 (2021).

    Article  ADS  CAS  Google Scholar 

  66. Teague, R. & Foreman-Mackey, D. bettermoments: a robust method to measure line centroids. Zenodo https://doi.org/10.5281/zenodo.1419753 (2018).

  67. Teague, R. eddy: extracting protoplanetary disk dynamics with Python. J. Open Source Softw. 4, 1220 (2019).

    Article  ADS  Google Scholar 

  68. Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  69. Piétu, V., Guilloteau, S. & Dutrey, A. Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk. Astron. Astrophys. 443, 945–954 (2005).

    Article  ADS  Google Scholar 

  70. Price, D. J. et al. Phantom: a smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics. Publ. Astron. Soc. Aust. 35, e031 (2018).

    Article  ADS  Google Scholar 

  71. Bate, M. R., Bonnell, I. A. & Price, N. M. Modelling accretion in protobinary systems. Mon. Not. R. Astron. Soc. 277, 362–376 (1995).

    Article  ADS  Google Scholar 

  72. Cullen, L. & Dehnen, W. Inviscid smoothed particle hydrodynamics. Mon. Not. R. Astron. Soc. 408, 669–683 (2010).

    Article  ADS  Google Scholar 

  73. Pinte, C., Ménard, F., Duchêne, G. & Bastien, P. Monte Carlo radiative transfer in protoplanetary disks. Astron. Astrophys. 459, 797–804 (2006).

    Article  ADS  Google Scholar 

  74. Pinte, C. et al. Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation. Astron. Astrophys. 498, 967–980 (2009).

    Article  ADS  Google Scholar 

  75. Pinte, C. et al. Kinematic evidence for an embedded protoplanet in a circumstellar disk. Astrophys. J. Lett. 860, L13 (2018).

    Article  ADS  Google Scholar 

  76. Li, D. et al. An ordered magnetic field in the protoplanetary disk of AB Aur revealed by mid-infrared polarimetry. Astrophys. J. 832, 18 (2016).

    Article  ADS  Google Scholar 

  77. Hillenbrand, L. A., Strom, S. E., Vrba, F. J. & Keene, J. Herbig Ae/Be stars: intermediate-mass stars surrounded by massive circumstellar accretion disks. Astrophys. J. 397, 613–643 (1992).

    Article  ADS  Google Scholar 

  78. Natta, A. et al. A reconsideration of disk properties in Herbig Ae stars. Astron. Astrophys. 371, 186–197 (2001).

    Article  ADS  Google Scholar 

  79. Lodato, G. Classical disc physics. New Astron. Rev. 52, 21–41 (2008).

    Article  ADS  Google Scholar 

  80. Rosotti, G. P. et al. Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary–disc interaction and a vertical temperature gradient. Mon. Not. R. Astron. Soc. 491, 1335–1347 (2020).

    Article  ADS  CAS  Google Scholar 

  81. Meru, F. et al. On the origin of the spiral morphology in the Elias 2–27 circumstellar disk. Astrophys. J. Lett. 839, L24 (2017).

    Article  ADS  Google Scholar 

  82. Zhang, Y. et al. Disk evolution study through imaging of nearby young stars (DESTINYS): diverse outcomes of binary–disk interactions. Astron. Astrophys. 672, A145 (2023).

    Article  CAS  Google Scholar 

  83. Norfolk, B. J. et al. The origin of the Doppler flip in HD 100546: a large-scale spiral arm generated by an inner binary companion. Astrophys. J. Lett. 936, L4 (2022).

    Article  ADS  CAS  Google Scholar 

  84. Ginski, C. et al. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE. Astron. Astrophys. 595, A112 (2016).

    Article  Google Scholar 

  85. Goodman, J. & Rafikov, R. R. Planetary torques as the viscosity of protoplanetary disks. Astrophys. J. 552, 793–802 (2001).

    Article  ADS  Google Scholar 

  86. Rafikov, R. R. Nonlinear propagation of planet-generated tidal waves. Astrophys. J. 569, 997–1008 (2002).

    Article  ADS  Google Scholar 

  87. Ogilvie, G. I. & Lubow, S. H. On the wake generated by a planet in a disc. Mon. Not. R. Astron. Soc. 330, 950–954 (2002).

    Article  ADS  Google Scholar 

  88. Bollati, F., Lodato, G., Price, D. J. & Pinte, C. The theory of kinks – I. A semi-analytic model of velocity perturbations due to planet–disc interaction. Mon. Not. R. Astron. Soc. 504, 5444–5454 (2021).

    Article  ADS  CAS  Google Scholar 

  89. Hilder, T., Fasano, D., Bollati, F. & Vandenberg, J. Wakeflow: a Python package for semi-analytic models of planetary wakes. J. Open Source Softw. 8, 4863 (2023).

    Article  ADS  Google Scholar 

  90. Zhou, Y. et al. UV-optical emission of AB Aur b is consistent with scattered stellar light. Astron. J. 166, 220 (2023).

    Article  ADS  Google Scholar 

  91. Biddle, L. I., Bowler, B. P., Zhou, Y., Franson, K. & Zhang, Z. Deep Paβ imaging of the candidate accreting protoplanet AB Aur b. Astron. J. 167, 172 (2024).

    Article  ADS  Google Scholar 

  92. Currie, T. Direct imaging detection of the protoplanet AB Aur b at wavelengths covering Paβ. Res. Notes AAS 8, 146 (2024).

    Article  ADS  Google Scholar 

  93. Zhu, Z., Dong, R., Stone, J. M. & Rafikov, R. R. The structure of spiral shocks excited by planetary-mass companions. Astrophys. J. 813, 88 (2015).

    Article  ADS  Google Scholar 

  94. Zhang, S. & Zhu, Z. The effects of disc self-gravity and radiative cooling on the formation of gaps and spirals by young planets. Mon. Not. R. Astron. Soc. 493, 2287–2305 (2020).

    Article  ADS  Google Scholar 

  95. Dullemond, C. P. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust trapping in thin-ringed protoplanetary disks. Astrophys. J. Lett. 869, L46 (2018).

    Article  ADS  CAS  Google Scholar 

  96. Birnstiel, T. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA maps of protoplanetary disks in terms of a dust model. Astrophys. J. Lett. 869, L45 (2018).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank our referees for their careful and insightful comments that improved the manuscript. We thank K. Kratter for enlightening discussions and valuable suggestions. J.S. thanks R. Loomis, S. Wood and T. Ashton at the North American ALMA Science Center (NAASC) for providing science support and technical guidance on the ALMA data as part of a data reduction visit to the NAASC, which was financed by the NAASC. The reduction and imaging of the ALMA data were performed on NAASC computing facilities. J.S. thanks C. Pinte, D. Price and J. Calcino for support with MCFOST, L. Keyte and F. Zagaria for discussions on self-calibrating ALMA data and C. White for sharing perceptually uniform colour maps. J.S. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Canada Graduate Scholarships Doctoral (CGS D) programme. R.D. acknowledges financial support provided by the NSERC through a Discovery Grant, as well as the Alfred P. Sloan Foundation through a Sloan Research Fellowship. C.L. and G.L. acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 823823 (RISE DUSTBUSTERS project). C.L. acknowledges funding from the UK Science and Technology Facilities Council (STFC) through the consolidated grant ST/W000997/1. B.V. acknowledges funding from the ERC CoG project PODCAST no. 864965. Y.-W.T. acknowledges support through National Science and Technology Council grant nos. 111-2112-M-001-064- and 112-2112-M-001-066-. J.H. was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant nos. 21H00059, 22H01274 and 23K03463. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2021.1.00690.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC; https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Based on data products created from observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 0104.C-0157(B). This work has made use of the SPHERE Data Centre, jointly operated by OSUG/IPAG (Grenoble), PYTHEAS/LAM/CESAM (Marseille), OCA/Lagrange (Nice), Observatoire de Paris/LESIA (Paris) and Observatoire de Lyon. This research used the Canadian Advanced Network for Astronomical Research (CANFAR) operated in partnership by the Canadian Astronomy Data Centre and the Digital Research Alliance of Canada, with support from the National Research Council of Canada, the Canadian Space Agency, CANARIE and the Canada Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Contributions

R.D. led the ALMA proposal. J.S. processed the ALMA data. J.H. processed the VLT/SPHERE data. C.H. performed the SPH simulations. J.S. performed the radiative-transfer calculations. C.L. and G.L. developed the analytic model. J.S. performed all presented analyses. J.S. and R.D. wrote the manuscript. All co-authors provided input to the ALMA proposal and/or the manuscript.

Corresponding authors

Correspondence to Jessica Speedie or Ruobing Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jonathan Williams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Moment maps: AB Aur observations and GI disk simulations.

ac, Integrated intensity (moment 0), intensity-weighted mean velocity (moment 1) and intensity-weighted linewidth (moment 2) maps for the ALMA 13CO observations towards AB Aur. Panel b appears in the main text as Fig. 2a. df, Moment 0, 1 and 2 maps for the synthetic ALMA 13CO observations of the SPH GI disk simulation. Like the AB Aur observations, the simulated GI disk shows a prominent GI wiggle along the southern minor axis (indicated by white arrows).

Extended Data Fig. 2 Filtered moment maps: AB Aur observations and GI disk simulations.

Expanding kernel filter residuals of the maps shown in Extended Data Fig. 1, highlighting global spirals and velocity disturbances generated by GI. Panels ac appear in the main text as Fig. 1b–d. The minor-axis GI wiggle indicated by arrows in Extended Data Fig. 1b,e is shown here as an isovelocity contour at vlos = vsys ± vchan in all panels.

Extended Data Fig. 3 Global GI wiggles in analytic models, SPH simulations and the AB Aur disk.

Isovelocity contours in line-of-sight velocity maps at the velocity values indicated by the colour bar. a, vlos map of the 2D analytic GI disk model (shown in Fig. 2b). b, vlos map of the 2D analytic Keplerian disk model (shown in Fig. 2b inset). c, Synthetic ALMA 13CO moment 1 map for the 3D SPH GI disk simulation (shown in Fig. 2c). d, Synthetic ALMA 13CO moment 1 map for the 3D SPH Keplerian disk simulation (shown in Fig. 2c inset). e, Observed ALMA 13CO moment 1 map for the AB Aur disk, imaged with robust 0.5 (shown in Fig. 2a). f, Like e but imaged with robust 1.5.

Extended Data Fig. 4 Obtaining velocity residuals in the AB Aur disk.

a, ALMA 13CO moment 1 map, imaged with robust 0.5, as shown in Fig. 2a. b, Background model made with a Keplerian rotation profile, assuming a geometrically thin axisymmetric disk (equation (1)). c, Velocity residuals after subtracting the model in panel b. Global spiral substructure is visible but unevenly so. The model does not capture the non-axisymmetric emission surface morphology and/or super-Keplerian rotation. d, Background model made with the expanding kernel filter (equation (15)). e, Velocity residuals after subtracting the model in panel d, as shown in Fig. 1b. fj, Like ae but with the ALMA C18O moment 1 map, imaged with robust 1.5.

Extended Data Fig. 5 Kinematics of GI-driven spiral arms.

ad, 2D analytic modelling23. eh, Synthetic ALMA 13CO observations of the 3D SPH GI disk simulation. il, ALMA observations of the AB Aur disk. a, Disk surface density (equations (4) and (5)). b, Line-of-sight velocity (equation (2)), as in Fig. 2b. c, Velocity residuals from Keplerian (that is, subtracting Fig. 2b inset). d, Line-of-sight component of the radial velocity (first term of equation (2)). e, Filtered moment 0. f, Moment 1. g, Moment 1 residuals from Keplerian. h, Filtered moment 1. i, ALMA 13CO filtered moment 0. j, ALMA 13CO filtered moment 2. k, ALMA 13CO filtered moment 1. l, ALMA C18O filtered moment 1 (robust 1.5). Panel l inset overlays the VLT/SPHERE H-band scattered-light spirals S1–S7 (refs. 37,38) in red and 13CO spirals S1–S9 we identify in black.

Extended Data Fig. 6 Methods for isolating the sinusoidal component of the southern minor-axis PV wiggle in the AB Aur disk.

a, Detrending the ALMA 13CO line centres from Fig. 3a with linear and quadratic trend lines found by a least-squares fit. b, Detrending with the expanding kernel high-pass filter, varying the kernel width parameter w0 and keeping the kernel radial power-law index fixed to γ = 0.25 (equation (15)). We find the background trend lines by extracting the velocity values from the high-pass-filter background map (for example, Extended Data Fig. 4d) within the same 0.5°-wide wedge-shaped mask as we do for the line centres, positioned along the southern disk minor axis. c, Like b but varying γ and keeping w0 fixed to w0 = 0.30″. The high-pass-filter detrending approach converges to the same measured PV wiggle magnitude as the quadratic fit approach.

Extended Data Fig. 7 PV wiggle morphology, magnitude and disk mass recovery in the SPH GI disk simulation.

Like Fig. 4 but for the synthetic ALMA observations of the SPH GI disk simulation. a, The synthetic ALMA 13CO line centres along the southern minor axis from Fig. 3c after quadratic detrending. Uncertainties on the line centres are shown by yellow-shaded regions. The magnitude of this PV wiggle is measured to be 39.1 ± 1.9 m s−1. The analytic model shown in the background for qualitative comparison has the same parameters as the underlying SPH simulation (Mdisk/M = 0.29 and β = 10) and its PV wiggle magnitude is 39.0 m s−1. b, As in Fig. 4c, a map of the minor-axis PV wiggle magnitude of 60 × 60 analytic models on a grid of disk-to-star mass ratios and cooling timescales. A contour is drawn at the measured magnitude of the synthetic 13CO PV wiggle in panel a and dashed lines represent the quoted uncertainties. The technique successfully recovers the disk mass set in the SPH simulation.

Extended Data Fig. 8 Comparisons with further sets of analytic models.

Like Fig. 4 but varying the azimuthal wavenumber m and surface density power-law index p in the comparison grid of analytic GI model disks. Each upper subpanel shows the quadratically detrended 13CO and C18O line centres (yellow) behind a demonstrative analytic PV wiggle (black) computed with the combination of m and p indicated by the row and column labels (keeping Mdisk/M = 0.3 and β = 10 fixed). Each lower subpanel shows the corresponding map of PV wiggle magnitude computed for a 60 × 60 grid of analytic models in Mdisk/M and β, again with the combination of m and p indicated by the row and column labels. The two yellow contours are drawn at the magnitude values measured for the observed AB Aur 13CO and C18O southern minor-axis PV wiggles. The white-shaded region between two white curves represents plausible β ranges from r = 1–5″. The combination shown in Fig. 4c is m = 3, p = 1.0.

Extended Data Fig. 9 Candidate sites of planet formation.

Coloured crosses mark the locations of candidate protoplanets reported in the literature35,45,46. A table providing the coordinates of the candidates on the sky, estimated masses and the reporting references is available as source data. a, Filtered ALMA 13CO moment 0 map, as in Fig. 1c. b, VLT/SPHERE H-band scattered-light image (ref. 35), as in Fig. 1a. The inset zooms into the central 2″ × 2″ region to show the spiral structures in different tracers at spatial scales unresolved by the present ALMA observations. The H-band scattered-light image is shown after high-pass filtering and orange contours show the two spirals identified in ALMA 12CO J = 2–1 moment 0 (ref. 45) at levels from 25 to 50 mJy per beam km s−1 in increments of 5 mJy per beam km s−1.

Source data

Extended Data Table 1 Details of the ALMA Band 6 observations

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speedie, J., Dong, R., Hall, C. et al. Gravitational instability in a planet-forming disk. Nature 633, 58–62 (2024). https://doi.org/10.1038/s41586-024-07877-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07877-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing