Abstract
Of the ~25 directly imaged planets to date, all are younger than 500Myr and all but 6 are younger than 100Myr1. Eps Ind A (HD209100, HIP108870) is a K5V star of roughly solar age (recently derived as 3.7-5.7Gyr2 and \({{\boldsymbol{3.5}}}_{-{\bf{1.3}}}^{+{\bf{0.8}}}\)Gyr3). A long-term radial velocity trend 4,5 as well as an astrometric acceleration6,7 led to claims of a giant planet2,8,9 orbiting the nearby star (3.6384±0.0013pc10). Here we report JWST coronagraphic images that reveal a giant exoplanet which is consistent with these radial and astrometric measurements, but inconsistent with the previously claimed planet properties. The new planet has temperature ~275K, and is remarkably bright at 10.65µm and 15.50µm. Non-detections between 3.5-5µm indicate an unknown opacity source in the atmosphere, possibly suggesting a high metallicity, high carbon-to-oxygen ratio planet. The best-fit temperature of the planet is consistent with theoretical thermal evolution models, which are previously untested at this temperature range. The data indicates that this is likely the only giant planet in the system and we therefore refer to it as “b”, despite it having significantly different orbital properties than the previously claimed planet “b”.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
24,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Matthews, E.C., Carter, A.L., Pathak, P. et al. A temperate super-Jupiter imaged with JWST in the mid-infrared. Nature (2024). https://doi.org/10.1038/s41586-024-07837-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41586-024-07837-8
This article is cited by
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


