Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the human dopamine transporter in complex with cocaine

Abstract

The dopamine transporter (DAT) is crucial for regulating dopamine signalling and is the prime mediator for the rewarding and addictive effects of cocaine1. As part of the neurotransmitter sodium symporter family, DAT uses the Na+ gradient across cell membranes to transport dopamine against its chemical gradient2. The transport mechanism involves both intra- and extracellular gates that control substrate access to a central site. However, the molecular intricacies of this process and the inhibitory mechanism of cocaine have remained unclear. Here, we present the molecular structure of human DAT in complex with cocaine at a resolution of 2.66 Å. Our findings reveal that DAT adopts the expected LeuT-fold, posing in an outward-open conformation with cocaine bound at the central (S1) site. Notably, while an Na+ occupies the second Na+ site (Na2), the Na1 site seems to be vacant, with the side chain of Asn82 occupying the presumed Na+ space. This structural insight elucidates the mechanism for the cocaine inhibition of human DAT and deepens our understanding of neurotransmitter transport. By shedding light on the molecular underpinnings of how cocaine acts, our study lays a foundation for the development of targeted medications to combat addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structure of full-length hDATTwin with bound cocaine.
Fig. 2: Purified hDAT is an active transporter.
Fig. 3: Cocaine binds to S1 of hDAT.
Fig. 4: Ion-binding sites in the hDATTwin:cocaine complex.
Fig. 5: Trp84 and EL4 assume different conformations in hDAT and dDAT cocaine complexes.
Fig. 6: A fourth cholesterol lines hDATTwin.

Similar content being viewed by others

Data availability

The cryo-EM reconstruction has been deposited in the Protein Data Bank under the accession code 9EO4 and the corresponding EM map has been deposited in the Electron Microscopy Data Bank under the accession code EMD-19845. All plotted data for the pharmacological experiments are available as Source data. All molecular-dynamics simulations data are available from Zenodo at https://doi.org/10.5281/zenodo.10804003 (ref. 78). A reporting summary is available as Supplementary Information. All data, as well as the associated metadata, that support the findings in this study are also available on request from the corresponding author. Source data are provided with this paper.

References

  1. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & Caron, M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kristensen, A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev. 63, 585–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, R. et al. Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proc. Natl Acad. Sci. USA 103, 9333–9338 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davis, S. E., Cirincione, A. B., Jimenez-Torres, A. C. & Zhu, J. The impact of neurotransmitters on the neurobiology of neurodegenerative diseases. Int. J. Mol. Sci. 24, 15340 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones, S. R. et al. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc. Natl Acad. Sci. USA 95, 4029–4034 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Plenge, P. et al. The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nat. Commun. 12, 5063 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, D. & Gouaux, E. Illumination of serotonin transporter mechanism and role of the allosteric site. Sci. Adv. 7, eabl3857 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shahsavar, A. et al. Structural insights into the inhibition of glycine reuptake. Nature 591, 677–681 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wei, Y. et al. Transport mechanism and pharmacology of the human GlyT1. Cell 187, 1719–1732 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Motiwala, Z. et al. Structural basis of GABA reuptake inhibition. Nature 606, 820–826 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nayak, S. R. et al. Cryo-EM structure of GABA transporter 1 reveals substrate recognition and transport mechanism. Nat. Struct. Mol. Biol. 30, 1023–1032 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu, A. et al. Molecular basis for substrate recognition and transport of human GABA transporter GAT1. Nat. Struct. Mol. Biol. 30, 1012–1022 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Loland, C. J. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters. Biochim. Biophys. Acta 1850, 500–510 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Rudnick, G. & Sandtner, W. Serotonin transport in the 21st century. J. Gen. Physiol. 151, 1248–1264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Borre, L., Andreassen, T. F., Shi, L., Weinstein, H. & Gether, U. The second sodium site in the dopamine transporter controls cation permeation and is regulated by chloride. J. Biol. Chem. 289, 25764–25773 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tavoulari, S. et al. Two Na+ sites control conformational change in a neurotransmitter transporter homolog. J. Biol. Chem. https://doi.org/10.1074/jbc.M115.692012 (2016).

    Article  PubMed  Google Scholar 

  21. Nelson, P. J. & Rudnick, G. Coupling between platelet 5-hydroxytryptamine and potassium transport. J. Biol. Chem. 254, 10084–10089 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Hellsberg, E. et al. Identification of the potassium-binding site in serotonin transporter. Proc. Natl Acad. Sci. USA 121, e2319384121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmidt, S. G. et al. The dopamine transporter antiports potassium to increase the uptake of dopamine. Nat. Commun. 13, 2446 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhat, S. et al. Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function. eLife 10, e67996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeppelin, T., Ladefoged, L. K., Sinning, S., Periole, X. & Schiott, B. A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition. PLoS Comput. Biol. 14, e1005907 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Pidathala, S., Mallela, A. K., Joseph, D. & Penmatsa, A. Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Nat. Commun. 12, 2199 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pörzgen, P., Park, S. K., Hirsh, J., Sonders, M. S. & Amara, S. G. The antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines. Mol. Pharmacol. 59, 83–95 (2001).

    Article  PubMed  Google Scholar 

  28. Pugh, C. F., DeVree, B. T., Schmidt, S. G. & Loland, C. J. Pharmacological characterization of purified full-length dopamine transporter from Drosophila melanogaster. Cells 11, 3811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, D., Zhao, Z., Tajkhorshid, E. & Gouaux, E. Structures and membrane interactions of native serotonin transporter in complexes with psychostimulants. Proc. Natl Acad. Sci. USA 120, e2304602120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chae, P. S. et al. A new class of amphiphiles bearing rigid hydrophobic groups for solubilization and stabilization of membrane proteins. Chemistry 18, 9485–9490 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bjerggaard, C. et al. Surface targeting of the dopamine transporter involves discrete epitopes in the distal C terminus but does not require canonical PDZ domain interactions. J. Neurosci. 24, 7024–7036 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, L. B. et al. The role of N-glycosylation in function and surface trafficking of the human dopamine transporter. J. Biol. Chem. 279, 21012–21020 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Olivares, J. et al. Gβγ subunit activation promotes dopamine efflux through the dopamine transporter. Mol. Psychiatry 22, 1673–1679 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fog, J. U. et al. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51, 417–429 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Cremona, M. L. et al. Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat. Neurosci. 14, 469–477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ehsan, M. et al. New malonate-derived tetraglucoside detergents for membrane protein stability. ACS Chem. Biol. 15, 1697–1707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sørensen, L. et al. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J. Biol. Chem. 287, 43694–43707 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Henry, L. K. et al. Tyr-95 and Ile-172 in transmembrane segments 1 and 3 of human serotonin transporters interact to establish high affinity recognition of antidepressants. J. Biol. Chem. 281, 2012–2023 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Beuming, T. et al. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat. Neurosci. 11, 780–789 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng, M. H. & Bahar, I. Molecular mechanism of dopamine transport by human dopamine transporter. Structure 23, 2171–2181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Plenge, P. et al. Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter. J. Biol. Chem. 287, 39316–39326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salomon, K. et al. Dynamic extracellular vestibule of human SERT: unveiling druggable potential with high-affinity allosteric inhibitors. Proc. Natl Acad. Sci. USA 120, e2304089120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Plenge, P. et al. The mechanism of a high-affinity allosteric inhibitor of the serotonin transporter. Nat. Commun. 11, 1491 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coleman, J. A. et al. Chemical and structural investigation of the paroxetine-human serotonin transporter complex. eLife 9, e56427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laursen, L. et al. Cholesterol binding to a conserved site modulates the conformation, pharmacology, and transport kinetics of the human serotonin transporter. J. Biol. Chem. 293, 3510–3523 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nielsen, A. K. et al. Substrate-induced conformational dynamics of the dopamine transporter. Nat. Commun. 10, 2714 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Bloch, J. S. et al. Development of a universal nanobody-binding Fab module for fiducial-assisted cryo-EM studies of membrane proteins. Proc. Natl Acad. Sci. USA 118, e2115435118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, S. et al. Fabs enable single particle cryoEM studies of small proteins. Structure 20, 582–592 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Esendir, E. et al. Extracellular loops of the serotonin transporter act as a selectivity filter for drug binding. J. Biol. Chem. 297, 100863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spyrakis, F. et al. The roles of water in the protein matrix: a largely untapped resource for drug discovery. J. Med. Chem. 60, 6781–6827 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Okorom, A. V. et al. Modifications to 1-(4-(2-bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines that improve metabolic stability and retain an atypical DAT inhibitor profile. J. Med. Chem. https://doi.org/10.1021/acs.jmedchem.3c02037 (2024).

  52. Chen, N., Zhen, J. & Reith, M. E. A. Mutation of Trp84 and Asp313 of the dopamine transporter reveals similar mode of binding interaction for GBR12909 and benztropine as opposed to cocaine. J. Neurochem. 89, 853–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Mager, S. et al. Ion binding and permeation at the GABA transporter GAT1. J. Neurosci. 16, 5405–5414 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Coleman, J. A. et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hong, W. C. & Amara, S. G. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J. Biol. Chem. 285, 32616–32626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frangos, Z. J. et al. Membrane cholesterol regulates inhibition and substrate transport by the glycine transporter, GlyT2. Life Sci. Alliance 6, e202201708 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Merkle, P. S. et al. Substrate-modulated unwinding of transmembrane helices in the NSS transporter LeuT. Sci. Adv. 4, eaar6179 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Zou, M. F. et al. Structure–activity relationship studies on a series of 3α-[Bis(4-fluorophenyl)methoxy]tropanes and 3α-[Bis(4-fluorophenyl)methylamino]tropanes as novel atypical dopamine transporter (DAT) inhibitors for the treatment of cocaine use disorders. J. Med. Chem. 60, 10172–10187 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Loland, C. J. et al. R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol. Psychiatry 72, 405–413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Loland, C. J. et al. Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors. Mol. Pharmacol. 73, 813–823 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985).

    Article  Google Scholar 

  65. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Shelley, J. C. et al. Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 21, 681–691 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  ADS  CAS  Google Scholar 

  73. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. https://doi.org/10.1063/1.2408420 (2007).

  74. Nosé, S. & Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983).

    Article  ADS  Google Scholar 

  75. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  ADS  CAS  Google Scholar 

  76. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

  77. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Nielsen, J. C. et al. MD simulations files for: structure of the human dopamine transporter in complex with cocaine. Zenodo https://doi.org/10.5281/zenodo.10804003 (2024).

Download references

Acknowledgements

We thank L. Rosenquist for technical assistance and A. Nygaard and M. Gram for critical reading of the manuscript. The financial support for this work was provided by the Lundbeck Foundation (R344-2020-1020 to C.J.L. and R368-2021-522 to A.S.); the Independent Research Fund Denmark (3101-00381B to C.J.L.); the Carlsberg Foundation (CF20-0345 to C.J.L.); and the Maersk Foundation (L-2022-00324 to J.C.N. and L-2021-00122 to K.S.). I.E.K is the recipient of a H2020 Marie Sklodowska-Curie training network (Program number 860954). A.S. was supported by a Lundbeck Foundation Fellows grant (R368-2021-522). Cryo-EM data collection was performed at the Danish Cryo-EM Facility at the Core Facility for Integrated Microscopy (CFIM), University of Copenhagen supported by the Novo Nordisk Foundation (grants NNF17SA0024386 and NNF22OC0075808).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized and designed by J.C.N., K.S. and C.J.L. J.C.N. and K.S. performed all experiments with assistance from S.B. T.P. assisted with cryo-EM grid preparation and performed the cryo-EM data collection with J.C.N. I.E.K. did the computational analysis and the molecular-dynamics simulation of the hDAT structure. Data were analysed and interpreted by J.C.N., K.S. and C.J.L. with support from A.S., T.P. and I.E.K. The manuscript was written by J.C.N. and C.J.L. with important contributions from K.S. and I.E.K. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Claus J. Loland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Purification procedure of hDATTwin.

a, Left: Coomassie stained SDS-PAGE gel (Supplementary Fig. 1) of samples taking throughout purification steps performed as described in methods. Right: Western blot (Supplementary Fig. 2) performed on SDS-PAGE gel loaded with the same samples as in Coomassie stained to track hDATTwin during purification. The gel was blotted using the monoclonal hDAT antibody MAB369 as primary antibody. b, Left: representative size-exclusion chromatography (SEC) of hDAT:cocaine on a Cytiva Superose-6 10/300 Increase column equilibrated in SEC buffer, tracking absorbance at 280 nm. Light blue shading: 14 fractions taken for SDS-PAGE (Supplementary Fig. 3) and coomassie (right). Dark blue shading: The four fractions (F46-49) taken for grid preparation. c, [3H]dopamine uptake inhibition by dopamine (homologous competition) in COS7 cells transfected with hDATWT (blue) or hDATTwin (purple) (Km = 917 [801; 1050] and 1020 [919; 1132] nM, respectively). The values are not significantly different (P = 0.554, two-sided Welch’s unpaired T-test). Data are shown as individual data points, n = 3 (hDATTwin) and n = 6 (hDATWT) biological replicates, performed in three technical replicates. Curves are fitted to the average of the data points. d, Affinities for dopamine, cocaine and MFZ 2-12 determined by competitive inhibition of either [3H]dopamine uptake or [3H]MFZ 2-12 binding for hDAT either expressed in COS7 cells, in detergent micelles or reconstituted into liposomes. Kd and Ki values are derived from the obtained IC50 values using the Cheng-Prusoff equation. Values are derived from Figs. 1d, 2b. Experiments in COS7 cells were performed using transiently expressing hDATWT. Experiments performed on purified hDATTwin in micelles were made using the scintillation proximity assay. hDATTwin was reconstituted into liposomes and [3H]dopamine transport was measured in singlets. Data are shown as mean [SEM interval].

Source data

Extended Data Fig. 2 Cryo-EM reconstruction of full-length human DAT in complex with cocaine.

Schematic representation of Cryo-EM processing workflow for hDATTwin:cocaine, showing representative micrograph and 2D classes. All steps were performed in CryoSPARC 4.4.1.

Extended Data Fig. 3 Atomic model of hDATTwin.

a, EM density of all resolved hDATTwin TMs shown as black mesh. Fitted model shown as blue ribbon and side chains displayed as sticks. Sulfur, oxygen and nitrogen atoms are colored yellow, red, and dark blue, respectively. b, GS-FSC plot showing average map resolution of 2.6 Å. c, angular sampling of the final reconstruction.

Extended Data Fig. 4 MD simulation of the non-resolved EL2 sequence.

a, Root Mean Square Fluncuation (RMSF) of EL2’s Cα atoms (amino acid residues 170-213) as a function of EL2 residues, in the last 30 ns of seven unbiased independent repeats (Supplementary Table 1). RMSF was calculated using the gmx rmsf tool using Gromacs 2021.4. b, Visual representations as ribbons, of the side view of hDAT in the last snapshots of the seven unbiased MD simulations in a zoomed-out (left) and zoomed-in view (right panel). EL2 is colored according to the MD repeat and the rest structure is colored grey in all repeats. Structures were superimposed according to the Cα atoms of their TM helices. c, Structures in panel B visualized from a top view. On the left, hDAT is depicted with both the EL2 and the rest of the structure, while on the right hDAT EL2 is depicted only for visual clarification. d, Root Mean Square Deviation (RMSD) of EL2’s Cα-atoms (amino acid residues 170-213) as a function of time, in the duration of the seven independent repeats (repeats colored mauve, blue and green). RMSD was calculated using the gmx rms tool using Gromacs 2021.4.

Extended Data Fig. 5 The c-terminus of the hDATTwin:cocaine complex is fully resolved.

a, EM density of the c-terminal domain of hDATTwin shown as black mesh with fitted structure as blue ribbon. Hydrophobic and hydrophilic residues of the amphipathic helix are shown as yellow and aqua sticks, respectively. Nitrogen, oxygen, and hydrogen atoms are shown in dark blue, red and white, respectively. b, The amphipathic c-terminal helix of hDATTwin:cocaine complex (blue) shown in colors representing hydrophobic (yellow) and hydrophilic (aqua) residues. The detergent micelle is shaded in gray with the outline marked with a solid black line. Below: a schematic representation of the helix demarcating the hydrophobic and hydrophilic sides with dashed lines in yellow and aqua, respectively.

Extended Data Fig. 6 Cocaine binding to purified hDATTwin is similar to hDAT expressed in COS7 cells.

a, Inhibition of [3H]MFZ 2-12 binding by cocaine, determined in both intact COS7 cells expressing hDATWT (blue) and in detergent solubilized hDATTwin (purple). The affinity (Ki) determined for cocaine is similar in both systems (Extended Data Fig. 1d). Data are shown as individual data points, n = 3 (detergent solubilized hDATTwin) and n = 4 (hDATTwin expressed in COS7 cells) biological replicates, performed in three technical replicates. Curves are fitted to the average of the data points. b, To the left, the obtained cryo-EM density of the hDATTwin:cocaine complex contoured at 12σ and colored according to local resolution. In the middle, a cut through of the density exposing a non-proteinaceous density, marked by a dashed box, to which R-cocaine was fitted (shown to the right). c, Diagram showing the type of interactions between the functional groups of cocaine and involved hDATTwin residues (diagram calculated and generated by Maestro, Schrodinger suite). Residues within 6 Å distance are shown as teardrops, with the pointy edge representing side chain directionality. The backbone is represented as a black line connecting residues. Residues of the sequence not within the 6 Å distance are shown as black dots. Residues that do not have a line drawn for an interaction are involved in nonspecific hydrophobic interactions with cocaine. The binding pocket is represented by a line around the ligand, colored according to the nearest protein residue’s property. Solvent exposed areas are indicated on the ligand atoms, and by the break in the line drawn around the pocket.

Extended Data Fig. 7 MD simulations of ion binding in hDATTwin.

Minimum distance measurement of ions from (a) Cl- or (b) Na2 binding sites, as a function of time, during seven independent repeats of 200 to 300 ns MD simulations of hDAT:cocaine complex. a, Cl- dissociates within the first 30 ns when distance to OH of Ser357 changes from ~0.5 nm to ~3 nm (Supplementary Video 1). Inset: enlargement of the first 30 ns simulation illustrating Cl- dissociation to the media in the 7 trajectories. b, Na+ is stably bound throughout the simulations with no significant distance change to the O- of Asp421. Calculations were performed by using the gmx mindist tool (Gromacs 2021.4) and plots were generated using GraphPad Prism V10. Each independent repeat is depicted with a different color.

Extended Data Table 1 Time-dependent [3H]dopamine uptake in liposomes
Extended Data Table 2 Effect of cocaine on [3H]dopamine transport
Extended Data Table 3 Cryo-EM data collection, refinement and validation statistics

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and Supplementary Figs. 1–8, including source gels and western blots.

Reporting Summary

Peer Review file

Supplementary Checklist

Reliability and reproducibility checklist for molecular dynamics simulations.

Supplementary Video 1

Bound Cl ion displacement during the atomistic molecular dynamics simulations. Video of a molecular dynamics simulation trajectory of 200 ns duration showing hDAT in pink ribbons, with water molecules white and red sticks, Cl as a blue sphere and Na+ as a magenta sphere. The video shows an example of the Cl release events taking place owing to the low stability of the chloride ion. S357 is shown in cyan, and the conformational change is followed by Cl displacement.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, J.C., Salomon, K., Kalenderoglou, I.E. et al. Structure of the human dopamine transporter in complex with cocaine. Nature 632, 678–685 (2024). https://doi.org/10.1038/s41586-024-07804-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07804-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing