Abstract
As the closest transiting hot Jupiter to Earth, HD 189733b has been the benchmark planet for atmospheric characterization1,2,3. It has also been the anchor point for much of our theoretical understanding of exoplanet atmospheres from composition4, chemistry5,6, aerosols7 to atmospheric dynamics8, escape9 and modelling techniques10,11. Previous studies of HD 189733b have detected carbon and oxygen-bearing molecules H2O and CO (refs. 12,13) in the atmosphere. The presence of CO2 and CH4 has been claimed14,15 but later disputed12,16,17. The inferred metallicity based on these measurements, a key parameter in tracing planet formation locations18, varies from depletion19,20 to enhancement21,22, hindered by limited wavelength coverage and precision of the observations. Here we report detections of H2O (13.4σ), CO2 (11.2σ), CO (5σ) and H2S (4.5σ) in the transmission spectrum (2.4–5.0 μm) of HD 189733b. With an equilibrium temperature of about 1,200 K, H2O, CO and H2S are the main reservoirs for oxygen, carbon and sulfur. Based on the measured abundances of these three main volatile elements, we infer an atmospheric metallicity of three to five times stellar. The upper limit on the methane abundance at 5σ is 0.1 ppm, which indicates a low carbon-to-oxygen ratio (<0.2), suggesting formation through the accretion of water-rich icy planetesimals. The low oxygen-to-sulfur and carbon-to-sulfur ratios also support the planetesimal accretion formation pathway23.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The NIRCam data used in this paper are from JWST GO program 1633 (principal investigator D.D.) and are publicly available from the Mikulski Archive for Space Telescopes (MAST; https://mast.stsci.edu). White-light transit lightcurve, transit spectrum and models are archived at Zenodo (https://zenodo.org/records/11459715) (ref. 99).
References
Sing, D. K. et al. Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS. Mon. Not. R. Astron. Soc. 416, 1443–1455 (2011).
Deming, D., Harrington, J., Seager, S. & Richardson, L. J. Strong infrared emission from the extrasolar planet HD 189733b. Astrophys. J. 644, 560–564 (2006).
Knutson, H. A. et al. Multiwavelength constraints on the day–night circulation patterns of HD 189733b. Astrophys. J. 690, 822–836 (2008).
Fortney, J., Lodders, K., Marley, M. & Freedman, R. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008).
Moses, J. I. et al. Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15 (2011).
Tsai, S.-M. et al. VULCAN: an open-source, validated chemical kinetics Python code for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 228, 20 (2017).
Line, M. R. & Parmentier, V. The influence of nonuniform cloud cover on transit transmission spectra. Astrophys. J. 820, 78 (2016).
Showman, A. P. et al. Atmospheric circulation of hot Jupiters: coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J. 699, 564–584 (2009).
Lampón, M. et al. Modelling the He I triplet absorption at 10 830 Å in the atmospheres of HD 189733 b and GJ 3470 b. Astron. Astrophys. 647, A129 (2021).
Zhang, M. et al. PLATON II: new capabilities and a comprehensive retrieval on HD 189733b transit and eclipse data. Astrophys. J. 899, 27 (2020).
Line, M. R., Knutson, H., Wolf, A. S. & Yung, Y. L. A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios. Astrophys. J. 783, 70 (2014).
Birkby, J. L. et al. Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm. Mon. Not. R. Astron. Soc. Lett. 436, L35–L39 (2013).
McCullough, P. R., Crouzet, N., Deming, D. & Madhusudhan, N. Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit. Astrophys. J. 791, 55 (2014).
Swain, M. R., Vasisht, G. & Tinetti, G. The presence of methane in the atmosphere of an extrasolar planet. Nature 452, 329–331 (2008).
Swain, M. R. et al. Molecular signatures in the near-infrared dayside spectrum of HD 189733b. Astrophys. J. 690, L114–L117 (2009).
Brogi, M. et al. Rotation and winds of exoplanet HD 189733 b measured with high-dispersion transmission spectroscopy. Astrophys. J. 817, 106 (2016).
Crouzet, N., McCullough, P. R., Deming, D. & Madhusudhan, N. Water vapor in the spectrum of the extrasolar planet HD 189733b. II. The eclipse. Astrophys. J. 795, 166 (2014).
Mordasini, C., van Boekel, R., Mollière, P., Henning, Th. & Benneke, B. The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. Astrophys. J. 832, 41 (2016).
Madhusudhan, N., Crouzet, N., McCullough, P. R., Deming, D. & Hedges, C. H2O abundances in the atmospheres of three hot Jupiters. Astrophys. J. 791, L9 (2014).
Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J. 157, 114 (2019).
Fisher, C. & Heng, K. Retrieval analysis of 38 WFC3 transmission spectra and resolution of the normalization degeneracy. Mon. Not. R. Astron. Soc. 481, 4698–4727 (2018).
Finnerty, L. et al. Atmospheric metallicity and C/O of HD 189733 b from high-resolution spectroscopy. Astron. J. 167, 43 (2024).
Crossfield, I. J. M. Volatile-to-sulfur ratios can recover a gas giant’s accretion history. Astrophys. J. Lett. 952, L18 (2023).
Ahrer, E.-M. et al. Early release science of the exoplanet WASP-39b with JWST NIRCam. Nature 614, 653–658 (2023).
Bean, J. L. et al. High atmospheric metal enrichment for a Saturn-mass planet. Nature 618, 43–46 (2023).
Fu, G. et al. Water and an escaping helium tail detected in the hazy and methane-depleted atmosphere of HAT-P-18b from JWST NIRISS/SOSS. Astrophys. J. Lett. 940, L35 (2022).
Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).
Pont, F. et al. The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations. Mon. Not. R. Astron. Soc. 432, 2917–2944 (2013).
Kipping, D. M. & Tinetti, G. Nightside pollution of exoplanet transit depths. Mon. Not. R. Astron. Soc. 407, 2589–2598 (2010).
Komacek, T. D. & Showman, A. P. Temporal variability in hot Jupiter atmospheres. Astrophys. J. 888, 2 (2019).
Burrows, A. Spectra as windows into exoplanet atmospheres. Proc. Natl Acad. Sci. USA 111, 12601–12609 (2014).
Madhusudhan, N. in Handbook of Exoplanets (ed. Deeg, H. J. & Belmonte, J. A.) 2153–2182 (Springer, 2018).
Line, M. R. et al. A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775, 137 (2013).
Parmentier, V. & Guillot, T. A non-grey analytical model for irradiated atmospheres. I. Derivation. Astron. Astrophys. 562, A133 (2014).
Tsai, S.-M. et al. Photochemically produced SO2 in the atmosphere of WASP-39b. Nature 617, 483–487 (2023).
Polman, J., Waters, L. B. F. M., Min, M., Miguel, Y. & Khorshid, N. H2S and SO2 detectability in hot Jupiters: sulphur species as indicators of metallicity and C/O ratio. Astron. Astrophys. 670, A161 (2023).
Powell, D. et al. Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b. Nature 626, 979–983 (2024).
Lee, E. K. H., Tsai, S.-M., Hammond, M. & Tan, X. A mini-chemical scheme with net reactions for 3D general circulation models. II. 3D thermochemical modelling of WASP-39b and HD 189733b. Astron. Astrophys. 672, A110 (2023).
Öberg, K. I., Murray-Clay, R. & Bergin, E. A. The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. 743, L16 (2011).
Madhusudhan, N. C/O ratio as a dimension for characterizing exoplanetary atmospheres. Astrophys. J. 758, 36 (2012).
Brewer, J. M. & Fischer, D. A. C/O and Mg/Si ratios of stars in the solar neighborhood. Astrophys. J. 831, 20 (2016).
Atreya, S. K. et al. The origin and evolution of Saturn, with exoplanet perspective. In Saturn in the 21st Century (eds Baines, K. H. et al.) (Cambridge Univ. Press, 2018).
Li, C. et al. The water abundance in Jupiter’s equatorial zone. Nat. Astron. 4, 609–616 (2020).
Schlawin, E. et al. JWST Noise Floor. I. Random error sources in JWST NIRCam time series. Astron. J. 160, 231 (2020).
Kreidberg, L. batman: BAsic Transit Model cAlculatioN in Python. Publ. Astron. Soc. Pac. 127, 1161–1165 (2015).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).
Magic, Z., Chiavassa, A., Collet, R. & Asplund, M. The STAGGER-grid: a grid of 3D stellar atmosphere models: IV. Limb darkening coefficients. Astron. Astrophys. 573, A90 (2015).
Grant, D. & Wakeford, H. R. Exo-TiC/ExoTiC-LD: ExoTiC-LD v.3.0.0 (2022). Zenodo https://doi.org/10.5281/zenodo.7437681.
Agol, E. et al. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer. Astrophys. J. 721, 1861–1877 (2010).
Arcangeli, J., Désert, J.-M., Parmentier, V., Tsai, S.-M. & Stevenson, K. B. A new approach to spectroscopic phase curves: the emission spectrum of WASP-12b observed in quadrature with HST/WFC3. Astron. Astrophys. 646, A94 (2021).
Mikal-Evans, T. et al. Diurnal variations in the stratosphere of the ultrahot giant exoplanet WASP-121b. Nat. Astron. 6, 471–479 (2022).
Berta, Z. K. et al. The flat transmission spectrum of the super-earth GJ1214b from wide field camera 3 on the Hubble Space Telescope. Astrophys. J. 747, 35 (2012).
Baluev, R. V. et al. Homogeneously derived transit timings for 17 exoplanets and reassessed TTV trends for WASP-12 and WASP-4. Mon. Not. R. Astron. Soc. 490, 1294–1312 (2019).
Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002).
Carter, J. A. & Winn, J. N. Empirical constraints on the oblateness of an exoplanet. Astrophys. J. 709, 1219–1229 (2010).
Kempton, E. M.-R. et al. A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve. Nature 620, 67–71 (2023).
Bell, T. J. et al. Eureka!: an end-to-end pipeline for JWST time-series observations. J. Open Source Softw. 7, 4503 (2022).
Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).
Welbanks, L., McGill, P., Line, M. & Madhusudhan, N. On the application of Bayesian leave-one-out cross-validation to exoplanet atmospheric analysis. Astron. J. 165, 112 (2023).
Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).
Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).
Welbanks, L. & Madhusudhan, N. Aurora: a generalized retrieval framework for exoplanetary transmission spectra. Astrophys. J. 913, 114 (2021).
Fortney, J. J. et al. A framework for characterizing the atmospheres of low-mass low-density transiting planets. Astrophys. J. 775, 80 (2013).
Heng, K. & Kitzmann, D. The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge. Mon. Not. R. Astron. Soc. 470, 2972–2981 (2017).
Welbanks, L. et al. Mass-metallicity trends in transiting exoplanets from atmospheric abundances of H2O, Na, and K. Astrophys. J. 887, L20 (2019).
MacDonald, R. J., Goyal, J. M. & Lewis, N. K. Why is it so cold in here? Explaining the cold temperatures retrieved from transmission spectra of exoplanet atmospheres. Astrophys. J. 893, L43 (2020).
Welbanks, L. & Madhusudhan, N. On atmospheric retrievals of exoplanets with inhomogeneous terminators. Astrophys. J. 933, 79 (2022).
Benneke, B. & Seager, S. Atmospheric retrieval for super-earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753, 100 (2012).
Guillot, T. On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, A27 (2010).
Marley, M. S. & Robinson, T. D. On the cool side: modeling the atmospheres of brown dwarfs and giant planets. Annu. Rev. Astron. Astrophys. 53, 279–323 (2015).
Piskorz, D. et al. Ground- and space-based detection of the thermal emission spectrum of the transiting hot Jupiter KELT-2Ab. Astron. J. 156, 133 (2018).
Mansfield, M. et al. A unique hot Jupiter spectral sequence with evidence for compositional diversity. Nat. Astron. 5, 1224–1232 (2021).
Iyer, A. R., Line, M. R., Muirhead, P. S., Fortney, J. J. & Gharib-Nezhad, E. The sphinx M-dwarf spectral grid. I. Benchmarking new model atmospheres to derive fundamental M-dwarf properties. Astrophys. J. 944, 41 (2023).
Tsai, S.-M. et al. A comparative study of atmospheric chemistry with VULCAN. Astrophys. J. 923, 264 (2021).
Carter, A. L. et al. The JWST Early Release Science Program for direct observations of exoplanetary systems I: High-contrast imaging of the exoplanet HIP 65426 b from 2 to 16 μm. Astrophys. J. Lett. 951, L20 (2023).
Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).
Lodders, K., Palme, H. & Gail, H.-P. in Solar System, Vol. 4B, 712–770 (ed. Trümper, J.) (Springer, 2009).
Gordon, S. & Mcbride, B. J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. I. Analysis (NASA, 1994).
Thorngren, D., Gao, P. & Fortney, J. J. The intrinsic temperature and radiative-convective boundary depth in the atmospheres of hot Jupiters. Astrophys. J. Lett. 884, L6 (2019).
Karman, T. et al. Update of the HITRAN collision-induced absorption section. Icarus 328, 160–175 (2019).
Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).
Huang, X., Gamache, R. R., Freedman, R. S., Schwenke, D. W. & Lee, T. J. Reliable infrared line lists for 13 CO2 isotopologues up to E′ = 18,000 cm−1 and 1500 K, with line shape parameters. J. Quant. Spectrosc. Radiat. Transf. 147, 134–144 (2014).
Allard, N. F., Spiegelman, F. & Kielkopf, J. F. K–H2 line shapes for the spectra of cool brown dwarfs. Astron. Astrophys. 589, A21 (2016).
Underwood, D. S. et al. ExoMol molecular line lists – XIV. The rotation-vibration spectrum of hot SO2. Mon. Not. R. Astron. Soc. 459, 3890–3899 (2016).
Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020).
Coles, P. A., Yurchenko, S. N. & Tennyson, J. ExoMol molecular line lists – XXXV. A rotation-vibration line list for hot ammonia. Mon. Not. R. Astron. Soc. 490, 4638–4647 (2019).
Harris, G. J., Tennyson, J., Kaminsky, B. M., Pavlenko, Y. V. & Jones, H. R. A. Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas. Mon. Not. R. Astron. Soc. 367, 400–406 (2006).
Chubb, K. L., Tennyson, J. & Yurchenko, S. N. ExoMol molecular line lists – XXXVII. Spectra of acetylene. Mon. Not. R. Astron. Soc. 493, 1531–1545 (2020).
Azzam, A. A. A., Tennyson, J., Yurchenko, S. N. & Naumenko, O. V. ExoMol molecular line lists – XVI. The rotation-vibration spectrum of hot H2S. Mon. Not. R. Astron. Soc. 460, 4063–4074 (2016).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Etangs, A. L.des, Pont, F., Vidal-Madjar, A. & Sing, D. Rayleigh scattering in the transit spectrum of HD 189733b. Astron. Astrophys. 481, L83–L86 (2008).
Fisher, C. & Heng, K. How do we optimally sample model grids of exoplanet spectra? Astrophys. J. 934, 31 (2022).
Kreidberg, L. et al. A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. Astrophys. J. 814, 66 (2015).
Kreidberg, L., Line, M. R., Thorngren, D., Morley, C. V. & Stevenson, K. B. Water, High-altitude Condensates, and Possible Methane Depletion in the Atmosphere of the Warm Super-Neptune WASP-107b. Astrophys. J. 858, L6 (2018).
Sing, D. K. Observational techniques with transiting exoplanetary atmospheres. In Astrophysics of Exoplanetary Atmospheres (eds Bozza, V. et al.) (Springer, 2018).
Henry, G. W. Techniques for automated high-precision photometry of sun-like stars. Publ. Astron. Soc. Pac. 111, 845–860 (1999).
Vaníček, P. Further development and properties of the spectral analysis by least-squares. Astrophys. Space Sci. 12, 10–33 (1971).
Henry, G. W., Fekel, F. C. & Williamson, M. H. Nine bright γ Doradus variables discovered with ground-based photometry. Astron. J. 163, 180 (2022).
Fu, G. et al. Products for “Hydrogen sulfide and metal-enriched atmosphere for a Jupiter-mass exoplanet”. Zenodo https://doi.org/10.5281/zenodo.11459715 (2024).
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Acknowledgements
G.F. acknowledges support for this work provided by NASA through JWST GO program funding support.
Author information
Authors and Affiliations
Contributions
G.F. led the data analysis effort, contributed to the interpretation of the observations and led the writing of the paper. L.W. led the modelling analysis effort, including the grid and free retrievals using 1D-RCPE models. D.D. led the JWST GO 1633 program proposal and contributed to the data analysis effort. J.Inglis., M.Z. and E.S. contributed to the data analysis effort by providing additional data reductions for both NIRCam F322W2 and F444W wavelength channels. J.L., J.Ih and M.N. performed 1D forward models and retrievals. J.I.M. performed photochemistry calculations. D.K.S. helped with creating the figures and text in the paper. M.L. and E.M.-R.K. contributed to the model interpretation efforts. H.A.K., T.G., A.B.S. and D.R.L. are part of the proposal team and provided useful feedback for the project and the paper. G.H. provided the ground-based photometric monitoring data.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Eric Agol and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 F322W2 data analysis products.
Extracted light curves (left), best-fit models (mid), and residuals (right) for every F322W2 wavelength channel from four different independent reduction pipelines.
Extended Data Fig. 2 NIRCam transmission spectra of HD 189733b from the four independent reductions.
Comparison of the spectra from the four data analyses before applying stellar heterogeneity and nightside emission contamination corrections.
Extended Data Fig. 3 The effect of nightside dilution and stellar heterogeneity correction on the spectrum.
The uncorrected spectrum from analysis A is shown in blue. The nightside dilution corrected spectrum is in orange. The nightside dilution and stellar heterogeneity correction applied spectrum is in black. It has been shifted up with a constant offset of 80 ppm to better demonstrate the wavelength-dependent changes. An offset parameter between F322W2 and F444W spectra is joint fitted in the atmospheric modeling and the best-fit offset value is ~ 20 ppm which is consistent to within 1σ between spectra from the overlapped wavelength region.
Extended Data Fig. 4 Corner plot of the grid retrieval with error inflation.
Posterior distributions of the ten grid retrieval parameters.
Extended Data Fig. 5 Corner plot of the free retrieval with error inflation.
Posterior distributions of the twenty free retrieval parameters.
Extended Data Fig. 6 F444W data analysis products.
Extracted light curves (left), best-fit models (mid), and residuals (right) for every F444W wavelength channel from four different independent reduction pipelines.
Extended Data Fig. 7 Allan variance plot of the F444W residuals from all four reductions.
Extracted light curves (left), best-fit models (mid), and residuals (right) for every F444W wavelength channel from four different independent reduction pipelines.
Extended Data Fig. 8 Allan variance plot of the F322W2 residuals from all four reductions.
Extracted light curves (left), best-fit models (mid), and residuals (right) for every F322W2 wavelength channel from four different independent reduction pipelines.
Extended Data Fig. 9 The CO2/H2O ratio versus metallicity.
Transmission spectroscopy is directly shaped by the relative elemental abundance within the atmosphere from ~ 1 to 0.001 mbar. Although free retrieval results can have degeneracies between different molecular abundances, they are robust at reflecting their relative ratios. The CO2/H2O from the free retrieval (brown) is consistent to within 1 sigma (shaded region) of CO2/H2O value at ~ 3 time solar metallicity from the grid models. As we do not expect CO2 or H2O abundance to vary significantly from the equilibrium chemistry predictions for this planet, this agreement shows that free retrieval is consistent with the super-stellar metallicity inferred by the grid retrieval.
Extended Data Fig. 10 Corner plot of the grid retrieval with H2S scaling.
Same as Fig. 4 but with an additional term of H2S abundance scaling.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7 and Supplementary Tables 1–3.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fu, G., Welbanks, L., Deming, D. et al. Hydrogen sulfide and metal-enriched atmosphere for a Jupiter-mass exoplanet. Nature 632, 752–756 (2024). https://doi.org/10.1038/s41586-024-07760-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-024-07760-y
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.