Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrogen sulfide and metal-enriched atmosphere for a Jupiter-mass exoplanet

Abstract

As the closest transiting hot Jupiter to Earth, HD 189733b has been the benchmark planet for atmospheric characterization1,2,3. It has also been the anchor point for much of our theoretical understanding of exoplanet atmospheres from composition4, chemistry5,6, aerosols7 to atmospheric dynamics8, escape9 and modelling techniques10,11. Previous studies of HD 189733b have detected carbon and oxygen-bearing molecules H2O and CO (refs. 12,13) in the atmosphere. The presence of CO2 and CH4 has been claimed14,15 but later disputed12,16,17. The inferred metallicity based on these measurements, a key parameter in tracing planet formation locations18, varies from depletion19,20 to enhancement21,22, hindered by limited wavelength coverage and precision of the observations. Here we report detections of H2O (13.4σ), CO2 (11.2σ), CO (5σ) and H2S (4.5σ) in the transmission spectrum (2.4–5.0 μm) of HD 189733b. With an equilibrium temperature of about 1,200 K, H2O, CO and H2S are the main reservoirs for oxygen, carbon and sulfur. Based on the measured abundances of these three main volatile elements, we infer an atmospheric metallicity of three to five times stellar. The upper limit on the methane abundance at 5σ is 0.1 ppm, which indicates a low carbon-to-oxygen ratio (<0.2), suggesting formation through the accretion of water-rich icy planetesimals. The low oxygen-to-sulfur and carbon-to-sulfur ratios also support the planetesimal accretion formation pathway23.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The white-light curve of visits 1 and 2 with F444W and F322W2, respectively.
Fig. 2: The JWST NIRCam transmission spectrum of HD 189733b.
Fig. 3: The best-fit grid model volume mixing ratio compared with free retrieval posterior.
Fig. 4: Inferred atmospheric elemental abundances of HD 189733b.

Similar content being viewed by others

Data availability

The NIRCam data used in this paper are from JWST GO program 1633 (principal investigator D.D.) and are publicly available from the Mikulski Archive for Space Telescopes (MAST; https://mast.stsci.edu). White-light transit lightcurve, transit spectrum and models are archived at Zenodo (https://zenodo.org/records/11459715) (ref. 99).

Code availability

We used the following codes to reduce JWST NIRCam data: STScI JWST Calibration pipeline, Eureka!57, numpy100, scipy90 and matplotlib101.

References

  1. Sing, D. K. et al. Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS. Mon. Not. R. Astron. Soc. 416, 1443–1455 (2011).

    Article  ADS  Google Scholar 

  2. Deming, D., Harrington, J., Seager, S. & Richardson, L. J. Strong infrared emission from the extrasolar planet HD 189733b. Astrophys. J. 644, 560–564 (2006).

    Article  ADS  CAS  Google Scholar 

  3. Knutson, H. A. et al. Multiwavelength constraints on the day–night circulation patterns of HD 189733b. Astrophys. J. 690, 822–836 (2008).

    Article  ADS  Google Scholar 

  4. Fortney, J., Lodders, K., Marley, M. & Freedman, R. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008).

    Article  ADS  CAS  Google Scholar 

  5. Moses, J. I. et al. Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15 (2011).

    Article  ADS  Google Scholar 

  6. Tsai, S.-M. et al. VULCAN: an open-source, validated chemical kinetics Python code for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 228, 20 (2017).

    Article  ADS  Google Scholar 

  7. Line, M. R. & Parmentier, V. The influence of nonuniform cloud cover on transit transmission spectra. Astrophys. J. 820, 78 (2016).

    Article  ADS  Google Scholar 

  8. Showman, A. P. et al. Atmospheric circulation of hot Jupiters: coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J. 699, 564–584 (2009).

    Article  ADS  CAS  Google Scholar 

  9. Lampón, M. et al. Modelling the He I triplet absorption at 10 830 Å in the atmospheres of HD 189733 b and GJ 3470 b. Astron. Astrophys. 647, A129 (2021).

    Article  Google Scholar 

  10. Zhang, M. et al. PLATON II: new capabilities and a comprehensive retrieval on HD 189733b transit and eclipse data. Astrophys. J. 899, 27 (2020).

    Article  ADS  CAS  Google Scholar 

  11. Line, M. R., Knutson, H., Wolf, A. S. & Yung, Y. L. A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios. Astrophys. J. 783, 70 (2014).

    Article  ADS  Google Scholar 

  12. Birkby, J. L. et al. Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm. Mon. Not. R. Astron. Soc. Lett. 436, L35–L39 (2013).

    Article  ADS  CAS  Google Scholar 

  13. McCullough, P. R., Crouzet, N., Deming, D. & Madhusudhan, N. Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit. Astrophys. J. 791, 55 (2014).

    Article  ADS  Google Scholar 

  14. Swain, M. R., Vasisht, G. & Tinetti, G. The presence of methane in the atmosphere of an extrasolar planet. Nature 452, 329–331 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Swain, M. R. et al. Molecular signatures in the near-infrared dayside spectrum of HD 189733b. Astrophys. J. 690, L114–L117 (2009).

    Article  ADS  CAS  Google Scholar 

  16. Brogi, M. et al. Rotation and winds of exoplanet HD 189733 b measured with high-dispersion transmission spectroscopy. Astrophys. J. 817, 106 (2016).

    Article  ADS  Google Scholar 

  17. Crouzet, N., McCullough, P. R., Deming, D. & Madhusudhan, N. Water vapor in the spectrum of the extrasolar planet HD 189733b. II. The eclipse. Astrophys. J. 795, 166 (2014).

    Article  ADS  Google Scholar 

  18. Mordasini, C., van Boekel, R., Mollière, P., Henning, Th. & Benneke, B. The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. Astrophys. J. 832, 41 (2016).

    Article  ADS  Google Scholar 

  19. Madhusudhan, N., Crouzet, N., McCullough, P. R., Deming, D. & Hedges, C. H2O abundances in the atmospheres of three hot Jupiters. Astrophys. J. 791, L9 (2014).

    Article  ADS  Google Scholar 

  20. Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J. 157, 114 (2019).

    Article  ADS  CAS  Google Scholar 

  21. Fisher, C. & Heng, K. Retrieval analysis of 38 WFC3 transmission spectra and resolution of the normalization degeneracy. Mon. Not. R. Astron. Soc. 481, 4698–4727 (2018).

    Article  ADS  CAS  Google Scholar 

  22. Finnerty, L. et al. Atmospheric metallicity and C/O of HD 189733 b from high-resolution spectroscopy. Astron. J. 167, 43 (2024).

  23. Crossfield, I. J. M. Volatile-to-sulfur ratios can recover a gas giant’s accretion history. Astrophys. J. Lett. 952, L18 (2023).

    Article  ADS  Google Scholar 

  24. Ahrer, E.-M. et al. Early release science of the exoplanet WASP-39b with JWST NIRCam. Nature 614, 653–658 (2023).

  25. Bean, J. L. et al. High atmospheric metal enrichment for a Saturn-mass planet. Nature 618, 43–46 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Fu, G. et al. Water and an escaping helium tail detected in the hazy and methane-depleted atmosphere of HAT-P-18b from JWST NIRISS/SOSS. Astrophys. J. Lett. 940, L35 (2022).

    Article  ADS  CAS  Google Scholar 

  27. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).

    Article  ADS  Google Scholar 

  28. Pont, F. et al. The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations. Mon. Not. R. Astron. Soc. 432, 2917–2944 (2013).

    Article  ADS  Google Scholar 

  29. Kipping, D. M. & Tinetti, G. Nightside pollution of exoplanet transit depths. Mon. Not. R. Astron. Soc. 407, 2589–2598 (2010).

    Article  ADS  CAS  Google Scholar 

  30. Komacek, T. D. & Showman, A. P. Temporal variability in hot Jupiter atmospheres. Astrophys. J. 888, 2 (2019).

    Article  ADS  Google Scholar 

  31. Burrows, A. Spectra as windows into exoplanet atmospheres. Proc. Natl Acad. Sci. USA 111, 12601–12609 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madhusudhan, N. in Handbook of Exoplanets (ed. Deeg, H. J. & Belmonte, J. A.) 2153–2182 (Springer, 2018).

  33. Line, M. R. et al. A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775, 137 (2013).

    Article  ADS  Google Scholar 

  34. Parmentier, V. & Guillot, T. A non-grey analytical model for irradiated atmospheres. I. Derivation. Astron. Astrophys. 562, A133 (2014).

    Article  ADS  Google Scholar 

  35. Tsai, S.-M. et al. Photochemically produced SO2 in the atmosphere of WASP-39b. Nature 617, 483–487 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Polman, J., Waters, L. B. F. M., Min, M., Miguel, Y. & Khorshid, N. H2S and SO2 detectability in hot Jupiters: sulphur species as indicators of metallicity and C/O ratio. Astron. Astrophys. 670, A161 (2023).

    Article  ADS  CAS  Google Scholar 

  37. Powell, D. et al. Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b. Nature 626, 979–983 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, E. K. H., Tsai, S.-M., Hammond, M. & Tan, X. A mini-chemical scheme with net reactions for 3D general circulation models. II. 3D thermochemical modelling of WASP-39b and HD 189733b. Astron. Astrophys. 672, A110 (2023).

    Article  CAS  Google Scholar 

  39. Öberg, K. I., Murray-Clay, R. & Bergin, E. A. The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. 743, L16 (2011).

    Article  ADS  Google Scholar 

  40. Madhusudhan, N. C/O ratio as a dimension for characterizing exoplanetary atmospheres. Astrophys. J. 758, 36 (2012).

    Article  ADS  Google Scholar 

  41. Brewer, J. M. & Fischer, D. A. C/O and Mg/Si ratios of stars in the solar neighborhood. Astrophys. J. 831, 20 (2016).

    Article  ADS  Google Scholar 

  42. Atreya, S. K. et al. The origin and evolution of Saturn, with exoplanet perspective. In Saturn in the 21st Century (eds Baines, K. H. et al.) (Cambridge Univ. Press, 2018).

  43. Li, C. et al. The water abundance in Jupiter’s equatorial zone. Nat. Astron. 4, 609–616 (2020).

    Article  ADS  Google Scholar 

  44. Schlawin, E. et al. JWST Noise Floor. I. Random error sources in JWST NIRCam time series. Astron. J. 160, 231 (2020).

    Article  ADS  Google Scholar 

  45. Kreidberg, L. batman: BAsic Transit Model cAlculatioN in Python. Publ. Astron. Soc. Pac. 127, 1161–1165 (2015).

    Article  ADS  Google Scholar 

  46. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    Article  ADS  Google Scholar 

  47. Magic, Z., Chiavassa, A., Collet, R. & Asplund, M. The STAGGER-grid: a grid of 3D stellar atmosphere models: IV. Limb darkening coefficients. Astron. Astrophys. 573, A90 (2015).

    Article  ADS  Google Scholar 

  48. Grant, D. & Wakeford, H. R. Exo-TiC/ExoTiC-LD: ExoTiC-LD v.3.0.0 (2022). Zenodo https://doi.org/10.5281/zenodo.7437681.

  49. Agol, E. et al. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer. Astrophys. J. 721, 1861–1877 (2010).

    Article  ADS  CAS  Google Scholar 

  50. Arcangeli, J., Désert, J.-M., Parmentier, V., Tsai, S.-M. & Stevenson, K. B. A new approach to spectroscopic phase curves: the emission spectrum of WASP-12b observed in quadrature with HST/WFC3. Astron. Astrophys. 646, A94 (2021).

    Article  CAS  Google Scholar 

  51. Mikal-Evans, T. et al. Diurnal variations in the stratosphere of the ultrahot giant exoplanet WASP-121b. Nat. Astron. 6, 471–479 (2022).

    Article  ADS  Google Scholar 

  52. Berta, Z. K. et al. The flat transmission spectrum of the super-earth GJ1214b from wide field camera 3 on the Hubble Space Telescope. Astrophys. J. 747, 35 (2012).

    Article  ADS  Google Scholar 

  53. Baluev, R. V. et al. Homogeneously derived transit timings for 17 exoplanets and reassessed TTV trends for WASP-12 and WASP-4. Mon. Not. R. Astron. Soc. 490, 1294–1312 (2019).

  54. Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002).

    Article  ADS  Google Scholar 

  55. Carter, J. A. & Winn, J. N. Empirical constraints on the oblateness of an exoplanet. Astrophys. J. 709, 1219–1229 (2010).

    Article  ADS  CAS  Google Scholar 

  56. Kempton, E. M.-R. et al. A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve. Nature 620, 67–71 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Bell, T. J. et al. Eureka!: an end-to-end pipeline for JWST time-series observations. J. Open Source Softw. 7, 4503 (2022).

    Article  ADS  Google Scholar 

  58. Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).

    Article  MathSciNet  Google Scholar 

  59. Welbanks, L., McGill, P., Line, M. & Madhusudhan, N. On the application of Bayesian leave-one-out cross-validation to exoplanet atmospheric analysis. Astron. J. 165, 112 (2023).

    Article  ADS  Google Scholar 

  60. Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).

    Article  ADS  CAS  Google Scholar 

  61. Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).

    Article  ADS  Google Scholar 

  62. Welbanks, L. & Madhusudhan, N. Aurora: a generalized retrieval framework for exoplanetary transmission spectra. Astrophys. J. 913, 114 (2021).

    Article  ADS  CAS  Google Scholar 

  63. Fortney, J. J. et al. A framework for characterizing the atmospheres of low-mass low-density transiting planets. Astrophys. J. 775, 80 (2013).

  64. Heng, K. & Kitzmann, D. The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge. Mon. Not. R. Astron. Soc. 470, 2972–2981 (2017).

    Article  ADS  CAS  Google Scholar 

  65. Welbanks, L. et al. Mass-metallicity trends in transiting exoplanets from atmospheric abundances of H2O, Na, and K. Astrophys. J. 887, L20 (2019).

    Article  ADS  CAS  Google Scholar 

  66. MacDonald, R. J., Goyal, J. M. & Lewis, N. K. Why is it so cold in here? Explaining the cold temperatures retrieved from transmission spectra of exoplanet atmospheres. Astrophys. J. 893, L43 (2020).

    Article  ADS  CAS  Google Scholar 

  67. Welbanks, L. & Madhusudhan, N. On atmospheric retrievals of exoplanets with inhomogeneous terminators. Astrophys. J. 933, 79 (2022).

    Article  ADS  Google Scholar 

  68. Benneke, B. & Seager, S. Atmospheric retrieval for super-earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753, 100 (2012).

    Article  ADS  Google Scholar 

  69. Guillot, T. On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, A27 (2010).

    Article  ADS  Google Scholar 

  70. Marley, M. S. & Robinson, T. D. On the cool side: modeling the atmospheres of brown dwarfs and giant planets. Annu. Rev. Astron. Astrophys. 53, 279–323 (2015).

    Article  ADS  Google Scholar 

  71. Piskorz, D. et al. Ground- and space-based detection of the thermal emission spectrum of the transiting hot Jupiter KELT-2Ab. Astron. J. 156, 133 (2018).

    Article  ADS  Google Scholar 

  72. Mansfield, M. et al. A unique hot Jupiter spectral sequence with evidence for compositional diversity. Nat. Astron. 5, 1224–1232 (2021).

    Article  ADS  Google Scholar 

  73. Iyer, A. R., Line, M. R., Muirhead, P. S., Fortney, J. J. & Gharib-Nezhad, E. The sphinx M-dwarf spectral grid. I. Benchmarking new model atmospheres to derive fundamental M-dwarf properties. Astrophys. J. 944, 41 (2023).

    Article  ADS  Google Scholar 

  74. Tsai, S.-M. et al. A comparative study of atmospheric chemistry with VULCAN. Astrophys. J. 923, 264 (2021).

    Article  ADS  CAS  Google Scholar 

  75. Carter, A. L. et al. The JWST Early Release Science Program for direct observations of exoplanetary systems I: High-contrast imaging of the exoplanet HIP 65426 b from 2 to 16 μm. Astrophys. J. Lett. 951, L20 (2023).

    Article  ADS  Google Scholar 

  76. Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Article  Google Scholar 

  77. Lodders, K., Palme, H. & Gail, H.-P. in Solar System, Vol. 4B, 712–770 (ed. Trümper, J.) (Springer, 2009).

  78. Gordon, S. & Mcbride, B. J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. I. Analysis (NASA, 1994).

  79. Thorngren, D., Gao, P. & Fortney, J. J. The intrinsic temperature and radiative-convective boundary depth in the atmospheres of hot Jupiters. Astrophys. J. Lett. 884, L6 (2019).

    Article  ADS  CAS  Google Scholar 

  80. Karman, T. et al. Update of the HITRAN collision-induced absorption section. Icarus 328, 160–175 (2019).

    Article  ADS  CAS  Google Scholar 

  81. Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).

    Article  ADS  CAS  Google Scholar 

  82. Huang, X., Gamache, R. R., Freedman, R. S., Schwenke, D. W. & Lee, T. J. Reliable infrared line lists for 13 CO2 isotopologues up to E′ = 18,000 cm−1 and 1500 K, with line shape parameters. J. Quant. Spectrosc. Radiat. Transf. 147, 134–144 (2014).

    Article  ADS  CAS  Google Scholar 

  83. Allard, N. F., Spiegelman, F. & Kielkopf, J. F. K–H2 line shapes for the spectra of cool brown dwarfs. Astron. Astrophys. 589, A21 (2016).

    Article  ADS  Google Scholar 

  84. Underwood, D. S. et al. ExoMol molecular line lists – XIV. The rotation-vibration spectrum of hot SO2. Mon. Not. R. Astron. Soc. 459, 3890–3899 (2016).

    Article  ADS  CAS  Google Scholar 

  85. Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020).

    Article  ADS  CAS  Google Scholar 

  86. Coles, P. A., Yurchenko, S. N. & Tennyson, J. ExoMol molecular line lists – XXXV. A rotation-vibration line list for hot ammonia. Mon. Not. R. Astron. Soc. 490, 4638–4647 (2019).

    Article  ADS  CAS  Google Scholar 

  87. Harris, G. J., Tennyson, J., Kaminsky, B. M., Pavlenko, Y. V. & Jones, H. R. A. Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas. Mon. Not. R. Astron. Soc. 367, 400–406 (2006).

    Article  ADS  CAS  Google Scholar 

  88. Chubb, K. L., Tennyson, J. & Yurchenko, S. N. ExoMol molecular line lists – XXXVII. Spectra of acetylene. Mon. Not. R. Astron. Soc. 493, 1531–1545 (2020).

    Article  ADS  CAS  Google Scholar 

  89. Azzam, A. A. A., Tennyson, J., Yurchenko, S. N. & Naumenko, O. V. ExoMol molecular line lists – XVI. The rotation-vibration spectrum of hot H2S. Mon. Not. R. Astron. Soc. 460, 4063–4074 (2016).

    Article  ADS  CAS  Google Scholar 

  90. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Etangs, A. L.des, Pont, F., Vidal-Madjar, A. & Sing, D. Rayleigh scattering in the transit spectrum of HD 189733b. Astron. Astrophys. 481, L83–L86 (2008).

    Article  ADS  Google Scholar 

  92. Fisher, C. & Heng, K. How do we optimally sample model grids of exoplanet spectra? Astrophys. J. 934, 31 (2022).

    Article  ADS  Google Scholar 

  93. Kreidberg, L. et al. A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. Astrophys. J. 814, 66 (2015).

    Article  ADS  Google Scholar 

  94. Kreidberg, L., Line, M. R., Thorngren, D., Morley, C. V. & Stevenson, K. B. Water, High-altitude Condensates, and Possible Methane Depletion in the Atmosphere of the Warm Super-Neptune WASP-107b. Astrophys. J. 858, L6 (2018).

    Article  ADS  Google Scholar 

  95. Sing, D. K. Observational techniques with transiting exoplanetary atmospheres. In Astrophysics of Exoplanetary Atmospheres (eds Bozza, V. et al.) (Springer, 2018).

  96. Henry, G. W. Techniques for automated high-precision photometry of sun-like stars. Publ. Astron. Soc. Pac. 111, 845–860 (1999).

    Article  ADS  Google Scholar 

  97. Vaníček, P. Further development and properties of the spectral analysis by least-squares. Astrophys. Space Sci. 12, 10–33 (1971).

    Article  ADS  Google Scholar 

  98. Henry, G. W., Fekel, F. C. & Williamson, M. H. Nine bright γ Doradus variables discovered with ground-based photometry. Astron. J. 163, 180 (2022).

    Article  ADS  Google Scholar 

  99. Fu, G. et al. Products for “Hydrogen sulfide and metal-enriched atmosphere for a Jupiter-mass exoplanet”. Zenodo https://doi.org/10.5281/zenodo.11459715 (2024).

  100. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

G.F. acknowledges support for this work provided by NASA through JWST GO program funding support.

Author information

Authors and Affiliations

Authors

Contributions

G.F. led the data analysis effort, contributed to the interpretation of the observations and led the writing of the paper. L.W. led the modelling analysis effort, including the grid and free retrievals using 1D-RCPE models. D.D. led the JWST GO 1633 program proposal and contributed to the data analysis effort. J.Inglis., M.Z. and E.S. contributed to the data analysis effort by providing additional data reductions for both NIRCam F322W2 and F444W wavelength channels. J.L., J.Ih and M.N. performed 1D forward models and retrievals. J.I.M. performed photochemistry calculations. D.K.S. helped with creating the figures and text in the paper. M.L. and E.M.-R.K. contributed to the model interpretation efforts. H.A.K., T.G., A.B.S. and D.R.L. are part of the proposal team and provided useful feedback for the project and the paper. G.H. provided the ground-based photometric monitoring data.

Corresponding author

Correspondence to Guangwei Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Eric Agol and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 F322W2 data analysis products.

Extracted light curves (left), best-fit models (mid), and residuals (right) for every F322W2 wavelength channel from four different independent reduction pipelines.

Extended Data Fig. 2 NIRCam transmission spectra of HD 189733b from the four independent reductions.

Comparison of the spectra from the four data analyses before applying stellar heterogeneity and nightside emission contamination corrections.

Extended Data Fig. 3 The effect of nightside dilution and stellar heterogeneity correction on the spectrum.

The uncorrected spectrum from analysis A is shown in blue. The nightside dilution corrected spectrum is in orange. The nightside dilution and stellar heterogeneity correction applied spectrum is in black. It has been shifted up with a constant offset of 80 ppm to better demonstrate the wavelength-dependent changes. An offset parameter between F322W2 and F444W spectra is joint fitted in the atmospheric modeling and the best-fit offset value is ~ 20 ppm which is consistent to within 1σ between spectra from the overlapped wavelength region.

Extended Data Fig. 4 Corner plot of the grid retrieval with error inflation.

Posterior distributions of the ten grid retrieval parameters.

Extended Data Fig. 5 Corner plot of the free retrieval with error inflation.

Posterior distributions of the twenty free retrieval parameters.

Extended Data Fig. 6 F444W data analysis products.

Extracted light curves (left), best-fit models (mid), and residuals (right) for every F444W wavelength channel from four different independent reduction pipelines.

Extended Data Fig. 7 Allan variance plot of the F444W residuals from all four reductions.

Extracted light curves (left), best-fit models (mid), and residuals (right) for every F444W wavelength channel from four different independent reduction pipelines.

Extended Data Fig. 8 Allan variance plot of the F322W2 residuals from all four reductions.

Extracted light curves (left), best-fit models (mid), and residuals (right) for every F322W2 wavelength channel from four different independent reduction pipelines.

Extended Data Fig. 9 The CO2/H2O ratio versus metallicity.

Transmission spectroscopy is directly shaped by the relative elemental abundance within the atmosphere from ~ 1 to 0.001 mbar. Although free retrieval results can have degeneracies between different molecular abundances, they are robust at reflecting their relative ratios. The CO2/H2O from the free retrieval (brown) is consistent to within 1 sigma (shaded region) of CO2/H2O value at ~ 3 time solar metallicity from the grid models. As we do not expect CO2 or H2O abundance to vary significantly from the equilibrium chemistry predictions for this planet, this agreement shows that free retrieval is consistent with the super-stellar metallicity inferred by the grid retrieval.

Extended Data Fig. 10 Corner plot of the grid retrieval with H2S scaling.

Same as Fig. 4 but with an additional term of H2S abundance scaling.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Supplementary Tables 1–3.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, G., Welbanks, L., Deming, D. et al. Hydrogen sulfide and metal-enriched atmosphere for a Jupiter-mass exoplanet. Nature 632, 752–756 (2024). https://doi.org/10.1038/s41586-024-07760-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07760-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing