Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrogen sulfide and metal-enriched atmosphere for a Jupiter-mass exoplanet

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.


As the closest transiting hot Jupiter to Earth, HD 189733b has been the benchmark planet for atmospheric characterization 1,2,3. It has also been the anchor point for much of our theoretical understanding of exoplanet atmospheres from composition 4, chemistry 5,6, aerosols 7 to atmospheric dynamics 8, escape 9 and modeling techniques 10,11. Prior studies of HD 189733b have detected carbon and oxygen-bearing molecules H2O and CO 12,13 in the atmosphere. The presence of CO2 and CH4 has been claimed 14,15 but later disputed 12,16,17. The inferred metallicity based on these measurements, a key parameter in tracing planet formation locations 18, varies from depletion 19,20 to enhancement 21,22, hindered by limited wavelength coverage and precision of the observations. Here we report detections of H2O (13.4 sigma), CO2 (11.2 sigma), CO (5 sigma), and H2S (4.5 sigma) in the transmission spectrum (2.4-5 micron) of HD 189733b. With an equilibrium temperature of ~ 1200K, H2O, CO, and H2S are the main reservoirs for oxygen, carbon, and sulfur. Based on the measured abundances of these three major volatile elements, we infer an atmospheric metallicity of 3-5 times stellar. The upper limit on the methane abundance at 5 sigma is 0.1 ppm which indicates a low carbon-to-oxygen ratio (<0.2), suggesting formation through the accretion of water-rich icy planetesimals. The low oxygen-to-sulfur and carbon-to-sulfur ratios also support the planetesimal accretion formation pathway 23.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations


Corresponding author

Correspondence to Guangwei Fu.

Supplementary information

Supplementary Information

Supplementary Figs 1-7 and Supplementary Tables 1-3.

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, G., Welbanks, L., Deming, D. et al. Hydrogen sulfide and metal-enriched atmosphere for a Jupiter-mass exoplanet. Nature (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing