Abstract
Negotiations for a global treaty on plastic pollution1 will shape future policies on plastics production, use and waste management. Its parties will benefit from a high-resolution baseline of waste flows and plastic emission sources to enable identification of pollution hotspots and their causes2. Nationally aggregated waste management data can be distributed to smaller scales to identify generalized points of plastic accumulation and source phenomena3,4,5,6,7,8,9,10,11. However, it is challenging to use this type of spatial allocation to assess the conditions under which emissions take place12,13. Here we develop a global macroplastic pollution emissions inventory by combining conceptual modelling of emission mechanisms with measurable activity data. We define emissions as materials that have moved from the managed or mismanaged system (controlled or contained state) to the unmanaged system (uncontrolled or uncontained state—the environment). Using machine learning and probabilistic material flow analysis, we identify emission hotspots across 50,702 municipalities worldwide from five land-based plastic waste emission sources. We estimate global plastic waste emissions at 52.1 [48.3–56.3] million metric tonnes (Mt) per year, with approximately 57% wt. and 43% wt. open burned and unburned debris, respectively. Littering is the largest emission source in the Global North, whereas uncollected waste is the dominant emissions source across the Global South. We suggest that our findings can help inform treaty negotiations and develop national and sub-national waste management action plans and source inventories.
Similar content being viewed by others
Main
Plastic pollution is a global challenge requiring immediate action owing its environmental persistence and negative impact on ecosystems14, infrastructure15, society and the economy16. The importance of this burgeoning issue has recently been recognized by the ratification of a United Nations draft resolution to create an internationally legally binding instrument to end plastic pollution1, hereafter the ‘Plastics Treaty’. A global plastic pollution emissions inventory has been suggested as being critical to the success of the Plastics Treaty17 and such inventories have already been applied in the climate change field18 and as early evidence for a global legally binding agreement on mercury19,20—eventually the Minamata Convention21.
Previous efforts to model global plastic waste emissions and movement through the environment have demonstrated the scale of the issue, highlighting large macroplastic emissions from countries with extensive coastlines, large populations and insufficient waste management3,4,5,6,7,8,9,10,11. Yet there is a growing understanding that a much higher (sub-national) resolution is required, which identifies plastic pollution hotspots and accounts for specific local solid waste management, behavioural, cultural and socio-economic conditions12,17. We believe that the very concept of ‘emissions’ also requires clarification, owing to the complexity of the phenomena (Methods and Extended Data Fig. 1). We use it here for clarity rather than the loosely defined terms of ‘leakage’ and ‘mismanaged waste’ described elsewhere22 and we deliberately avoid the term ‘release’ suggested by the United Nations Economic Commission for Europe (UNECE)23, which could imply deliberate activity. We define plastic emissions as material that has moved from the managed or mismanaged systems (in which waste is subject to a form of control, however basic; contained state) to the unmanaged system (the environment; uncontained state) with no control. We further classify emissions according to two categories: (1) debris (physical particles >5 mm) and (2) open burning (mass combusted in open uncontrolled fires). For clarification, open burning emissions relate to the mass of material that is subjected to the practice, rather than the gaseous, liquid or solid matter emitted by the process. Further definitions and scope are in Supplementary Information Section S.2.
Mapping and quantification of plastic waste material flows is hindered by the lack of sufficiently detailed and up-to-date records of waste management practices and quantities at a local level24, which prevents the complete assessment of emissions from human systems25. Although coordinated work is underway to remedy this data paucity24, a measurable baseline is urgently required to inform Plastics Treaty obligations17. As with greenhouse gas18 or mercury19,20 emissions inventories, this baseline would enable a more rational distribution of overseas development assistance, empower policymakers with scarce resources to develop evidence-based specialized national and sub-national strategies, action plans and targets25, and create a strong evidential basis for the reorganization of material systems that have been the focus of Plastics Treaty proposals26 and negotiations27. Therefore, we created a macroplastic emissions inventory using a new methodology to quantify emissions for 50,702 municipality-level administrations from five land-based sources: (1) uncollected waste; (2) littering; (3) collection system; (4) uncontrolled disposal; and (5) rejects from sorting and reprocessing (Fig. 1). Unmeasured data were predicted using machine learning and flows were mapped using probabilistic material flow analysis (MFA) for the year 2020. See Methods and Supplementary Information for detailed methodology.
Global emissions of plastic waste
We estimate that 52.1 Mt year−1 [48.3–56.3] of macroplastic waste were emitted into the unmanaged system in 2020, representing 21% (wt.) of all the municipal plastic waste generated (251.7 Mt year−1 [233.1–272.4]) globally (statistics reported are the arithmetic mean of all iterations—simulation runs; the 5th and 95th percentiles are in square brackets). Approximately 43% (wt.) (22.2 Mt year−1 [20.6–24.0]) is unburned ‘debris’, meaning that it is no longer subject to any form of management or direct control and is at risk of transport across land and into the aquatic environment.
Most plastic pollution models do not report emissions in a way that is comparable with the present work, instead reporting emissions to ‘the aquatic environment’3, ‘aquatic ecosystems’6, ‘the ocean’8,28, ‘mismanaged plastic waste’5 and ‘riverine outflows’29. However, two studies report comparable data. Ryberg et al.11 estimated macroplastic debris emissions to the environment at 6.2 Mt year−1 (confidence interval (CI): 2.0–20.4) in 2015. The upper end of the CI is within the range of our 5th percentile for debris emissions but the central estimate is approximately 3.5 times lower than our mean. The categories reported by Ryberg et al.11 include sea-based, industrial and construction sources, which are all outside the scope of our model. Removing these would reduce their central estimate to 4.9 Mt year−1, 4.5 times lower than our mean estimate. The sum of ‘terrestrial’ and ‘aquatic’ emissions estimated by Lau et al.9 for 2016 was 29 Mt (95% CI: 22–39). This estimate includes microplastics and material emitted at sea but is otherwise congruent with our debris emissions category. Although the average reported by Lau et al.9 is approximately 23% higher than our mean estimate, the lower CI is approximately the same as our mean debris emissions.
Our model improves on earlier works and provides new information in five ways: (1) in this model, we used a bottom-up approach rather than regional10 and archetypal9 averages distributed to finer resolution (top-down approach); (2) our finer resolution accounts for spatial heterogeneity in sub-national waste management data; (3) we modelled emissions from five separate downstream sources rather than the single homogenous source used in other models3,4,5,6,7,8,28—‘mismanaged (plastic) waste’22, an umbrella term that encompasses a range of insufficiencies in waste management12; (4) our definition of ‘emission’ includes waste that escapes from ‘dumpsites’24 (defined in Methods) but excludes that retained within them because it is mostly buried beneath the waste mass30 and poses a low risk of being blown or washed into the unmanaged system31. Only the ‘working face’ of these sites contains material at risk of transmission through the action of wind and surface water runoff32 (Supplementary Information Section S.8.9). Conversely, it is self-evident that waste that is uncollected, scattered on land or accumulated in smaller ‘informal dumps’ has a much higher probability of being mobilized and transported across the terrestrial surface and into the aquatic environment; and 5) We account for the open burning of waste (Supplementary Information Section S.8.11), which is not specifically considered in most plastic pollution models3,4,5,6,7,8,11,28 and which our results indicate contributes to 57% (29.9 Mt year−1 [27.6–32.4]) of all plastic waste emitted, resulting in widespread risk to human health and the environment33. As far as we are aware, only Lau et al.9 report a comparable estimate of open burning of municipal solid waste plastic of 49 Mt year−1 (95% CI: 40–60) for 2016, two-thirds more than our estimate. The reason for this difference is the method of calculation. Whereas Lau et al.9 used emission factors derived from expert assumptions published by the Intergovernmental Panel on Climate Change (IPCC)18 and extrapolated from Wiedinmyer et al.34, our study uses census and survey activity data from 44 countries (Supplementary Information Section S.8.11).
Plastic emission hotspots outlook
On an absolute basis, we find that plastic pollution emissions are highest across countries in Southern Asia, Sub-Saharan Africa and South-eastern Asia (Fig. 2a–c), with the largest amount (9.3 Mt year−1 [6.5–12.7]) emitted by India, equivalent to nearly one-fifth of global plastic emissions. In contrast to previous plastic pollution models that positioned China as the world’s highest plastic polluter5,8, it is ranked fourth in our results, with emissions of 2.8 Mt year−1 [2.1–3.7], less than Nigeria (3.5 Mt year−1 [2.6–4.6]) and Indonesia (3.4 Mt year−1 [2.5–4.3]). This lower contribution to plastic emissions from China reflects our use of more up-to-date data35 that shows its substantial progress in adopting waste incineration and controlled landfill36. Conversely, India reports that its dumpsites (uncontrolled land disposal) outnumber sanitary landfills by 10:1 (ref. 37) and, despite the claim that there is a national collection coverage of 95%, there is evidence that official statistics do not include rural areas, open burning of uncollected waste or waste recycled by the informal sector38. This means that India’s official waste generation rate (approximately 0.12 kilograms per capita per day (kg cap−1 day−1)) is probably underestimated and waste collection overestimated. Our model corrects for flows missing in officially reported statistics, resulting in a waste generation rate for India of 0.54 kg cap−1 day−1 [0.39–0.73], which is similar to and between other comparable estimates38,39,40.
Our data for India indicate a collection coverage of 81% [80–82], meaning that nearly 53% (wt.) [51–56] of the country’s plastic waste emissions (30% wt. [29–32] debris and 23% wt. [22–25] open burning) come from the 255 [241–270] million people (18% [17–19] of the population) whose waste is uncollected. Most of the remaining emissions (38% wt. [36–40]) are as a result of open burning on dumpsites, in which fires are reported to be common38. Overall, we estimate that 56.8 Mt year−1 [40.0–77.7] of municipal solid waste is open burned in India, of which 5.8 Mt year−1 [4.1–7.9] is plastic. This is within the lower end of the ranges modelled by Chaudhary et al.38 of 74.0 Mt year−1 (uncertainty: 30–92) and Sharma et al.39 of 68 Mt year−1 (range: 45–105).
Open burning rather than intact items (debris) is the predominant emission type across most United Nations sub-regions, except for those which are predominantly in the Global North (Northern America, Northern Europe, Western Europe and Australia and New Zealand) and Sub-Saharan Africa, in which debris emissions (7.4 Mt year−1 [6.7–8.2]) are slightly higher than open burning emissions (5.9 Mt year−1 [5.2–6.6]) (Fig. 2c). This result is driven by data that indicate lower levels of open burning in the rural areas of low-income countries (LICs), of which there are many in the Sub-Saharan Africa region (Supplementary Fig. S.24d,f).
Approximately 69% (35.7 Mt year−1) of the world’s plastic waste emissions come from 20 countries, of which four are LICs, nine are lower middle-income countries (LMCs) and seven are upper middle-income countries (UMCs). Despite high-income countries (HICs) having higher plastic waste generation rates (0.17 kg cap−1 day−1 [0.15–0.20]), none are ranked in the top 90 polluters, because most have 100% collection coverage and controlled disposal. Furthermore, our modelling accounts for the mitigating impact of street sweeping activity on emissions, which is greater in HICs (Supplementary Information Section S.8.5). We acknowledge that we may have underestimated plastic waste emissions from some HICs because we deliberately excluded plastic waste exports from our analysis. As explained in Supplementary Information Section S.2, plastic waste exports from the top ten Organisation for Economic Co-operation and Development (OECD) exporters to non-OECD countries and Turkey have substantially decreased from nearly 5.4 Mt year−1 in 2017 to less than 1.7 Mt year−1 in 2022 (ref. 41), contributing approximately 0.03 Mt year−1 of emissions. Although this might affect some individual country results, the overall effect would be negligible in comparison with other sources.
Countries in low-income and middle-income categories have much lower plastic waste generation (LICs: 0.04 kg cap−1 day−1; LMCs: 0.07 kg cap−1 day−1; UMCs: 0.10 kg cap−1 day−1). However, in contrast to HICs, a large proportion of it is either uncollected (LICs: 55% wt.; LMCs: 26% wt.; UMCs: 11% wt.) or disposed of in dumpsites (uncontrolled disposal) (LICs: 36% wt.; LMCs: 57% wt.; UMCs: 19% wt.). The nine countries that make up the Southern Asia region emit a similar amount of plastic waste (15.1 Mt year−1 [12.1–18.7]) to the 51 countries in Sub-Saharan Africa (13.3 Mt year−1 [12.0–14.7]) (Fig. 2b,c), with Nigeria contributing to approximately one-quarter (3.5 Mt year−1 [2.7–4.6]) of the Sub-Saharan African burden. Urban areas (cities, towns and semi-densely populated areas) account for most emissions in all regions (Fig. 2b) because of low rural populations (Supplementary Information Section 7.1) and much lower plastic waste generation. However, we acknowledge that notable data gaps on solid waste management in rural communities exist and future efforts to address plastic pollution must include these often overlooked communities42.
Flexible plastic debris has a higher probability of being emitted into the environment in the Global South compared with rigid debris (mean ratio 56:44), driven by its greater prevalence (waste composition) and its propensity for mobilization under the action of wind and surface water (Fig. 2d). In the Global North (for example, Northern America), the opposite is true (mean ratio 33:67) because rigid plastics are more prevalent in the waste and because emissions are driven by littering rather than meteorological forcing.
Per-capita emission hotspots
The contrast between absolute plastic waste emissions from the Global North and the Global South is stark (Fig. 3a,c). However, on a per-capita basis, insufficiencies in local and national waste management systems are more apparent (Extended Data Figs. 2–6). For example, China, the world’s fourth largest absolute emitter, is one of the least polluting UMCs, ranked 153 of all countries on a per-capita basis (1.97 kg cap−1 year−1 [1.48–2.61]), and India, the world’s largest absolute emitter, is ranked 127 on a per-capita basis (6.64 kg cap−1 year−1 [4.66–9.08]). Conversely, Russia, the world’s fifth largest emitter on an absolute basis, also has high emissions on a per-capita basis (11.71 kg cap−1 year−1 [7.80–16.17]) because it is reported to have very low levels of controlled disposal43,44. Many countries in Sub-Saharan Africa that show low absolute plastic emissions are hotspots on a per-capita basis (Extended Data Fig. 4). Given the anticipated population boom in the region45, it is conceivable that, with an average emission rate of 12.01 kg cap−1 year−1 [10.83–13.25], Sub-Saharan Africa will become the world’s largest absolute source of plastic pollution within the next few decades.
Municipal-scale probability distributions indicate substantial uncertainty within municipalities for some of our model outputs (Fig. 3b). For example, the 5th and 95th percentiles of plastic emissions are 0.77–11.87 kg cap−1 year−1 (median 3.62 kg cap−1 year−1) for Agra (India) and 0.11–4.72 kg cap−1 year−1 (median 0.34 kg cap−1 year−1) for Maracaibo (Venezuela). The large ranges within many municipalities and relatively high kurtosis, for example, Shenzhen (42.3) and Maracaibo (19.9), are a consequence of our conservative application of probability density functions for many of the model’s input data, which have propagated through to the results.
Despite the wide uncertainty within each municipality, there are very large differences between many of them, enough to differentiate the most challenging locations from the least (Fig. 3b). For example, median plastic emissions for Hamburg (Germany) are estimated at 0.02 kg cap−1 year−1 [0.01–0.06] compared with Mogadishu (Somalia), which has almost 680 times more (13.63 kg cap−1 year−1 [4.05–36.70]). Such large differences demonstrate that substantial reductions in plastic emissions are feasible, reiterating the importance of measuring sound solid waste management activity data. Continuing efforts to gather more reliable municipal-scale information24 for SDG indicator 11.6.1 will gradually improve the accuracy of our model. However, much more comprehensive measurement and monitoring is required to improve the accuracy of flows that are rarely measured and that have been populated here using our conceptual sub-models.
Sources of plastic emissions
Uncollected waste is the largest contributor to plastic pollution in the Global South, accounting for 68% (35.6 Mt year−1) of all plastic waste emissions and 85% (18.7 Mt year−1) of all debris emissions. On a per-capita basis, uncollected waste represents 69%, 66% and 80% (wt.) of emissions in UMCs, LMCs and LICs, respectively (Fig. 4b). Approximately 56% (19.9 Mt year−1 [17.8–22.3]) of emissions from uncollected waste come from LMCs, in which the mean collection coverage is 74% [72–75] (Fig. 4a). Uncollected waste in LMCs accounts for 38% of total global plastic emissions and 51% (11.3 Mt year−1) of debris emissions. As far as we are aware, none of the other global plastic pollution models3,4,5,6,7,8,11,28 has explicitly highlighted uncollected waste as the main source of plastic pollution, instead grouping it in the ‘mismanaged waste’ category or, in one case9, together with disposal site debris emissions. Here we show that plastic waste emissions from uncontrolled land disposal sites (dumpsites), although important, contribute 25% (12.8 Mt year−1 [11.5–14.3]) of global plastic waste emissions, of which 98% (wt.) is open burned. This means that just 0.25 Mt year−1 is emitted from land disposal sites as debris, approximately 0.4% (wt.) of plastics deposited in uncontrolled disposal sites worldwide. This is substantially less than has been inferred elsewhere. For example, Lau et al.9 estimated that between 1% and 1.5% of rigid plastics and 8% and 13% of flexible and multimaterial plastics deposited in uncontrolled disposal sites would reach the aquatic environment each year. The difference is that Lau et al.9 used expert judgement to derive their transfer coefficients, whereas this work used a more detailed sub-model based on the surface area and runoff characteristics of dumpsites detailed in Supplementary Information Section S.8.9.
HICs contribute 0.3% (0.16 Mt year−1 [0.14–0.19]) of global plastic waste emissions. Among HICs, uncollected waste is the source of 21% [15–27] (0.03 Mt year−1 [0.02–0.05]) of plastic waste emissions, just 0.06% of the global emissions burden, largely because collection coverage is nearly 100%. The largest source of debris emissions in HICs is littering (see ‘Uncollected litter’ defined in Supplementary Table S.3), accounting for 53% of debris emissions and 49% (0.08 Mt year−1, 0.06 kg cap year−1) of all plastic emissions in the Global North (Fig. 4a,b). Of this, 0.03 Mt year−1 takes place in Northern America and 0.03 Mt year−1 in the Rest of Europe region (Fig. 4c), representing 0.09 kg cap year−1 and 0.07 kg cap year−1, respectively (Fig. 4d). The behavioural nature of littering46 contrasts with the underlying drivers of other emission sources, especially those in the Global South. This is because, although littering is negatively correlated with waste receptacle provision47, it is largely driven by the decisions of individuals46. By contrast, the 1.5 billion individuals whose waste is uncollected in the Global South have little choice but to self-manage it (defined in Supplementary Information Section S.4.1).
The mismanagement of rejects from plastics sorting and reprocessing (recycling system) in both the Global North and the Global South results in 1.0 Mt year−1 [0.9–1.1] of plastic waste emissions to the environment. These emissions have often been the focus of attention, particularly in relation to the transboundary trade (exports) in waste plastics48. However, here we show that the emissions burden from recycling macroplastic rejects is comparatively very small.
An inventory to support the treaty
The purpose of our study was to create a macroplastic pollution inventory method for baselining and monitoring emissions at the local scale, at which on-the-ground actions can be applied. Such an emissions inventory, explaining the mechanisms for emission from the waste management and societal systems, could form a basis for a more detailed and comprehensive assessment of possible interventions. Once macroplastics have entered the environment, they are technically and economically challenging to remove49 and, over time, will inevitably fragment into innumerable microplastics50, making clean-up efforts even more challenging. Minimizing plastic pollution at source by preventing the emission event in the first place must be a priority of the Plastics Treaty17 and our insight indicates that tackling uncollected waste would have a bigger impact than mitigating all other land-based macroplastic sources combined. Notably, we already have a large global workforce of informal recyclers, entrepreneurs who our model shows collect more than 49.8 Mt year−1 [45.1–54.9] of waste plastics annually, much of which would otherwise be mismanaged.
We suggest that interventions to reduce uncollected plastic waste would focus on upstream material reduction to reduce waste generation and/or substantial improvement of waste collection services and infrastructure, and our emissions inventory sets a detailed basis for this. As highlighted elsewhere9,51, mitigating plastic waste emissions will require a multisectoral approach that includes addressing insufficiencies across the lifecycle, including redesign of product systems, source reduction and improving recycling systems worldwide. The plausibility of timely and at-scale deployment of such interventions needs to be carefully reassessed in the context of our new results.
The large mass of waste that is burned in open uncontrolled fires has not formed a central part of discussions at Plastics Treaty negotiations26,27. Yet, according to our model, more plastic waste is burned than is emitted as debris worldwide, releasing a cocktail of potentially hazardous substances and climate forcing emissions, which may have a substantial impact on human health and ecological systems33. An unintended consequence of interventions to mitigate the release of debris could result in an increase in emissions from open burning and vice versa52. Therefore, we propose that the inclusion of this phenomenon is a critical component of the forthcoming negotiations: clearly, choosing between two main forms of plastic pollution should not be an option.
We acknowledge that there is a dearth of robust, quality-controlled and verifiable waste management activity data. We have tediously screened, assessed, harmonized and corrected relevant data, incorporating uncertainty using a probabilistic approach. We have designed a conceptual framework that allows the model’s input data and structure to be continuously updated. As more quality-controlled locally obtained measurements from across the waste and resources system become available, and our understanding of release mechanisms improves, the model’s precision and accuracy can be ameliorated.
As with international climate change agreements53, signatories to the Plastics Treaty will require a method to calculate and baseline their plastic waste emissions so that they can compare them with others. Our emissions inventory enables them to carry out these estimates at high resolution by conceptualizing the mechanisms of emission, providing insights into the nature, extent and causes of plastic pollution and, therefore, enabling development of evidence-based national and sub-national action plans to eliminate plastic in our environment.
Methods
We created a macroplastic emissions inventory using a new methodology to quantify emissions from land-based sources for 50,702 municipality-level administrations55 (see Supplementary Information for details on the method). We define plastic emissions as material that has moved from the managed or mismanaged systems (in which waste is subject to a form of control, however basic) to the unmanaged system (the environment) with no control. For example, open dumpsites, defined here as structures that contain concentrations of collected waste with only basic control to prevent its interaction with the environment, are a form of control, because most of the material buried beneath the waste mass is unlikely to undergo further movement into the environment.
Material was mapped through 81 downstream (after-use phase) processes to simulate the flow of municipal solid waste through globally diverse waste management systems (Fig. 1 and Supplementary Information Section 4). Emissions of land-based macroplastic debris (physical particles >5 mm) and open burning (combustion in open uncontrolled fires) from municipal solid waste (defined in Supplementary Information Section S.2) were quantified for flexible and rigid plastics (format). Activity data (the intensity of waste and resources recovery management activity) were obtained from four global56,57,58,59 and two national35,60 waste management databases. These were checked for errors, harmonized to a consistent basis and corrected if necessary, creating the first comprehensively quality controlled city-level solid waste management database with worldwide coverage (Supplementary Data 1). Our primary input data represent 12.2% of the 2015 global population, spanning each of the World Bank income categories (LICs: 12.0%; LMCs: 11.4%; UMCs: 13.5%; HICs: 11.2%). Further discussion on the representativeness of our input data is presented in Supplementary Information Section S.6.7.
Quantile regression random forest models61 predicted data for all global municipalities using national and sub-national socio-economic indicators. Waste management, circular economy and plastic waste emission characteristics, variables that are not commonly measured or reported, were estimated using data from the literature or through the creation of new conceptual models. These newly developed ‘sub-models’ (Supplementary Information Sections S.8.2, S.8.3, S.8.3.4, S.8.5, S.8.5.2, S.8.8, S.8.9, S.8.11.1 and S.9.1.2) used data on human behaviour, material value, socio-economic development, population density and solid waste management performance, creating an explanatory framework through which to estimate unmeasured system characteristics. The use of ‘process-level sub-models’ to describe larger systems has recently been advocated for plastic pollution modelling13.
Probabilistic (Monte Carlo simulation) MFA mapped flows of municipal solid waste (5,000 iterations) throughout the system (Supplementary Information Section S.4), resulting in detailed information on municipal solid waste and plastic waste management for each global municipality (Supplementary Data 5). Emissions into the unmanaged system, defined here as uncontained waste that is no longer subject to any form of management or control, were estimated for five key sources: (1) uncollected waste; (2) littering; (3) collection system; (4) uncontrolled disposal; and (5) rejects from sorting and reprocessing (Extended Data Fig. 1). The probabilistic MFA used probability density functions from two sources: (1) the results of the machine learning predictions and (2) from the secondary data collection and processing step detailed in Supplementary Information Section S.8. A full list of probability density functions used in our model is available in Supplementary Data 6 and the MFA equations are shown in Supplementary Data 2.
These flows and their associated uncertainty were aggregated to the national scale (Supplementary Data 3) to align with reporting for SDG indicator 11.6.1 (ref. 24) and to the regional and global scales (Supplementary Data 4) to create a multiresolution global plastic emissions inventory (Fig. 1 and Extended Data Fig. 7). This inventory is the first-stage prerequisite for a second terrestrial transport model (not discussed further here), collectively named the ‘Spatio-temporal quantification of plastic pollution origins and transport’ model (SPOT). Although we acknowledge that upstream processes during the production, conversion and use phases result in a range of emissions from plastics, they are outside the scope of our modelling. We also exclude textiles, sea-based sources of plastic pollution and waste electrical and electronic equipment. To improve comprehension of proportionality, the results are reported as the mean of all iterations (simulation runs). Numbers in square brackets are the 5th and 95th percentiles of all iterations. As there are no datasets with which to validate our model outputs, we took the same approach as Lau et al.9 and carried out global sensitivity analysis to assess the influence of the model inputs and structure on its results (Supplementary Information Section S.10).
We warn readers to consider the full uncertainty in our MFA results, particularly for municipal-scale outputs at which the ranges are generally much larger than national-scale or regional-scale aggregations. The origins of uncertainty in our model are discussed at length in Supplementary Information Section S.9.2.2. We also explain in Supplementary Information Section S.9.1.1 a specific circumstance in which we decided not to quantify uncertainty for the uncontrolled disposal coefficient (tC3) owing to limitations of the quantile regression random forest predictive capability for that particular aspect of the system.
Data availability
Supplementary Data 1–6 are freely available as part of the Supplementary Information and are available from Dryad: https://doi.org/10.5061/dryad.8cz8w9gxb. Administrative boundaries used for the maps were sourced from GADM version 3.6 and are available from https://gadm.org/.
Code availability
All code, model inputs and outputs are available from Dryad: https://doi.org/10.5061/dryad.8cz8w9gxb.
References
United Nations Environment Programme. UNEA Resolution 5/14 entitled “End plastic pollution: towards an international legally binding instrument”. United Nations Environment Assembly of the United Nations Environment Programme. https://wedocs.unep.org/bitstream/handle/20.500.11822/39812/OEWG_PP_1_INF_1_UNEA%20resolution.pdf (2022).
United Nations Environment Programme. Zero draft text of the international legally binding instrument on plastic pollution, including in the marine environment. United Nations Environment Assembly of the United Nations Environment Programme. https://wedocs.unep.org/bitstream/handle/20.500.11822/43239/ZERODRAFT.pdf (2023).
Meijer, L. J. J., van Emmerik, T., van der Ent, R., Schmidt, C. & Lebreton, L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. 7, eaaz5803 (2021).
Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).
Lebreton, L. & Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 5, 6 (2019).
Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).
Schmidt, C., Krauth, T. & Wagner, S. Export of plastic debris by rivers into the sea. Environ. Sci. Technol. 51, 12246–12253 (2017).
Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).
Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).
Organisation for Economic Co-operation and Development (OECD). Global plastics outlook: economic drivers, environmental impacts and policy options. https://www.oecd-ilibrary.org/content/publication/de747aef-en (OECD Publishing, 2022).
Ryberg, M. W., Hauschild, M. Z., Wang, F., Averous-Monnery, S. & Laurent, A. Global environmental losses of plastics across their value chains. Resour. Conserv. Recycl. 151, 104459 (2019).
Alencar, M. V. et al. How far are we from robust estimates of plastic litter leakage to the environment? J. Environ. Manage. 323, 116195 (2022).
MacLeod, M., Domercq, P., Harrison, S. & Praetorius, A. Computational models to confront the complex pollution footprint of plastic in the environment. Nat. Comput. Sci. 3, 486–494 (2023).
MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).
Honingh, D. et al. Urban river water level increase through plastic waste accumulation at a rack structure. Front. Earth Sci. 8, 28 (2020).
Beaumont, N. J. et al. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142, 189–195 (2019).
Zhu, X. & Rochman, C. Emissions inventories of plastic pollution: a critical foundation of an international agreement to inform targets and quantify progress. Environ. Sci. Technol. 56, 3309–3312 (2022).
Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies (IGES) (2006).
Pacyna, E. G., Pacyna, J. M., Steenhuisen, F. & Wilson, S. Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 40, 4048–4063 (2006).
Wilson, S. J., Steenhuisen, F., Pacyna, J. M. & Pacyna, E. G. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories. Atmos. Environ. 40, 4621–4632 (2006).
Selin, N. E. Global change and mercury cycling: challenges for implementing a global mercury treaty. Environ. Toxicol. Chem. 33, 1202–1210 (2014).
Edelson, M., Håbesland, D. & Traldi, R. Uncertainties in global estimates of plastic waste highlight the need for monitoring frameworks. Mar. Pollut. Bull. 171, 112720 (2021).
United Nations Economic Commission for Europe (UNECE). Talking trash: UNECE Framework on Waste Statistics helps countries measure progress towards circular economy. https://unece.org/circular-economy/press/talking-trash-unece-framework-waste-statistics-helps-countries-measure (2022).
UN-Habitat. Waste wise cities tool: step by step guide to assess a city’s municipal solid waste management performance through SDG indicator 11.6.1 monitoring. https://unhabitat.org/wwc-tool (2021).
Bank, M. S. et al. Global plastic pollution observation system to aid policy. Environ. Sci. Technol. 55, 7770–7775 (2021).
United Nations Environment Programme. Potential options for elements towards an international legally binding instrument, based on a comprehensive approach that addresses the full life cycle of plastics as called for by United Nations Environment Assembly resolution 5/14. https://wedocs.unep.org/xmlui/bitstream/handle/20.500.11822/42190/UNEP-PP-INC.2-4%20English.pdf?sequence=13&isAllowed=y (2023).
Kantai, T., Hengesbaugh, M., Hovden, K. & Pinto-Bazurco, J. F. Summary of the second meeting of the intergovernmental negotiating committee to develop an international legally binding instrument on plastic pollution: 29 May – 2 June 2023. Earth. Neg. Bull. 36, 1–9 (2023).
Zhang, Y. et al. Plastic waste discharge to the global ocean constrained by seawater observations. Nat. Commun. 14, 1372 (2023).
Mai, L. et al. Global riverine plastic outflows. Environ. Sci. Technol. 54, 10049–10056 (2020).
Stubbins, A., Law, K. L., Muñoz, S. E., Bianchi, T. S. & Zhu, L. Plastics in the Earth system. Science 373, 51–55 (2021).
Yadav, V. et al. Framework for quantifying environmental losses of plastics from landfills. Resour. Conserv. Recycl. 161, 104914 (2020).
Fei, X. et al. The distribution, behavior, and release of macro- and micro-size plastic wastes in solid waste disposal sites. Crit. Rev. Environ. Sci. Technol. 53, 366–389 (2023).
Velis, C. A. & Cook, E. Mismanagement of plastic waste through open burning with emphasis on the global south: a systematic review of risks to occupational and public health. Environ. Sci. Technol. 55, 7186–7207 (2021).
Wiedinmyer, C., Yokelson, R. J. & Gullett, B. K. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Environ. Sci. Technol. 48, 9523–9530 (2014).
Ministry of Housing and Urban-Rural Development (MoHURD). 2019 urban construction statistical yearbook. https://web.archive.org/web/20231203200401/https://www.mohurd.gov.cn/file/old/2020/20201231/w02020123122485271423125000.xls (2019).
Ding, Y. et al. A review of China’s municipal solid waste (MSW) and comparison with international regions: management and technologies in treatment and resource utilization. J. Clean. Prod. 293, 126144 (2021).
Central Pollution Control Board (CPCB). Annual report 2020-21 on implementation of solid waste management rules, 2016. https://cpcb.nic.in/status-of-implementation-of-solid-waste-rules/ (2021).
Chaudhary, P. et al. Underreporting and open burning – the two largest challenges for sustainable waste management in India. Resour. Conserv. Recycl. 175, 105865 (2021).
Sharma, G. et al. Gridded emissions of CO, NOx, SO2, CO2, NH3, HCl, CH4, PM2.5, PM10, BC, and NMVOC from open municipal waste burning in India. Environ. Sci. Technol. 53, 4765–4774 (2019).
Chen, D. M. C., Bodirsky, B. L., Krueger, T., Mishra, A. & Popp, A. The world’s growing municipal solid waste: trends and impacts. Environ. Res. Lett. 15, 074021 (2020).
United Nations. UN Comtrade Database: 3915-Waste, parings and scrap, of plastics 2022. https://comtradeplus.un.org/ (2024).
Mihai, F. C. et al. Plastic pollution, waste management issues, and circular economy opportunities in rural communities. Sustainability 14, 20 (2022).
Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. City level codebook. World Bank https://datacatalog.worldbank.org/dataset/what-waste-global-database (2018).
Korobova, N. et al. Waste in Russia: garbage or valuable resource? Scenarios for developing the municipal solid waste management sector. https://documents1.worldbank.org/curated/pt/702251549554831489/pdf/Waste-in-Russia-Garbage-or-Valuable-Resource.pdf (International Finance Corporation, 2014).
United Nations Department of Economic and Social Affairs Population Division. World population prospects 2022: summary of results. Report no. UN DESA/POP/2021/TR/NO. 3. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (2022).
Chaudhary, A. H., Polonsky, M. J. & McClaren, N. Littering behaviour: a systematic review. Int. J. Consum. Stud. 45, 478–510 (2021).
Schultz, P. W., Bator, R. J., Large, L. B., Bruni, C. M. & Tabanico, J. J. Littering in context: personal and environmental predictors of littering behavior. Environ. Behav. 45, 35–59 (2011).
Bishop, G., Styles, D. & Lens, P. N. L. Recycling of European plastic is a pathway for plastic debris in the ocean. Environ. Int. 142, 105893 (2020).
Bellou, N. et al. Global assessment of innovative solutions to tackle marine litter. Nat. Sustain. 4, 516–524 (2021).
Waller, C. L. et al. Microplastics in the Antarctic marine system: an emerging area of research. Sci. Total Environ. 598, 220–227 (2017).
Organisation for Economic Co-operation and Development (OECD). Global plastics outlook: policy scenarios to 2060. https://www.oecd-ilibrary.org/environment/global-plastics-outlook_aa1edf33-en (OECD Publishing, 2022).
Velis, C. A. Plastic pollution global treaty to cover waste pickers and open burning? Waste Manage. Res. 40, 1–2 (2022).
Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).
Schiavina, M., Melchiorri, M. & Freire, S. GHS-DUC R2022A - GHS degree of urbanisation classification, application of the degree of urbanisation methodology (stage II) to GADM 3.6 layer, multitemporal (1975-2030). European Commission Joint Research Centre (JRC). http://data.europa.eu/89h/f5224214-6b66-43df-a9c6-cc974f17d803 (2022).
GADM. GADM database of global administrative areas. https://gadm.org/ (2012).
UN-Habitat. Wastewise cities (WaCT) data portal. https://unh.rwm.global/ (2022).
Wasteaware. Wasteaware benchmark indicators. http://wabi.wasteaware.org/ (2022).
Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. What a waste 2.0: a global snapshot of solid waste management to 2050. https://openknowledge.worldbank.org/bitstream/handle/10986/30317/9781464813290.pdf?sequence=12&isAllowed=y (World Bank Publications, 2018).
United Nations Statistics Division (UNSD). UNSD environmental indicators – waste. https://unstats.un.org/unsd/envstats/qindicators (2020).
Sistem Informasi Pengelolaan Sampah Nasional (SIPSN). National waste management information system. https://sipsn.menlhk.go.id/sipsn/public/home (2022).
Meinshausen, N. Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006).
Acknowledgements
We would like to thank Y. Gavish, data analyst, for comments on modelling uncertainty and machine learning; A. Savvantoglou for illustrations and graphic design; C. Gonzales and M. Harkness for data cleaning; K. Terzidis for collection and analysis of incineration data. For assistance in securing access to municipality-related primary data and assisting with comprehension of data collection and reporting methods used by the main international datasets: N. Takeuchi (UN-Habitat), A. Whiteman (Wasteaware), M. Newbury (United Nations Statistics Division) and S. Kaza (World Bank Group). Funding: this work was partly supported by the United Nations Human Settlements Programme (UN-Habitat), with further in-kind support by the University of Leeds. The views expressed in this article are those of the authors’ alone and do not necessarily represent the views or policies of UN-Habitat.
Author information
Authors and Affiliations
Contributions
J.W.C.: conceptualization; methodology; software; validation; formal analysis; investigation; data curation; writing – original draft; writing – review and editing; visualization. E.C.: conceptualization; methodology; validation; formal analysis; investigation; data curation; writing – original draft; writing – review and editing; visualization. C.A.V.: conceptualization; methodology; validation; formal analysis; investigation; data curation; writing – original draft; writing – review and editing; visualization; supervision; resources; funding acquisition.
Corresponding author
Ethics declarations
Competing interests
C.A.V. consults for organizations active in the waste, resources and circular economy sphere. He receives funding from UKRI, GCRF, NERC, ESRC, BBSRC, Royal Academy of Engineering, British Council, Innovate UK, EC H2020, World Bank Group, OECD, GIZ, UN-Habitat, UNESCAP, UNOPS, The Pew Charitable Trusts, IGES, ISWA, GRID-Arendal, Swedish EPA and SYSTEMIQ. He is affiliated with the International Solid Waste Association (ISWA), the Scientist’s Coalition for an Effective Plastics Treaty and the Innovation Alliance for a Global Plastics Treaty. The University of Leeds has memorandums of understanding with the Alliance To End Plastic Waste and the United Nations Environment Global Partnership on Plastic Pollution and Marine Litter (GPML), which refer to plastic pollution databases. E.C. has consulted for Tearfund.
Peer review
Peer review information
Nature thanks Matthew MacLeod and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 The point at which material passes from a contained to an uncontained state across the emission boundary is described here as an emission.
Emissions originate from five core emission sources and from three system parts (generated, managed and mismanaged), each of which exhibit different containment characteristics.
Extended Data Fig. 2 Macroplastic emissions into the environment (debris and open burned) by municipality in mean kg cap−1 year−1 for the year 2020.
Countries in the Global South have high per-capita emissions compared with those in the Global North.
Extended Data Fig. 3 Macroplastic emissions into the environment (debris and open burned) by municipality for Latin America and the Caribbean in mean kg cap−1 year−1 for the year 2020.
Hotspots for per-capita emissions include municipalities in Paraguay, Belize and Haiti, whereas municipalities in Uruguay and Chile have comparably lower emissions.
Extended Data Fig. 4 Macroplastic emissions into the environment (debris and open burned) by municipality for Africa in mean kg cap−1 year−1 for the year 2020.
Per-capita emissions are high throughout the continent, with notable hotspots including municipalities in South Sudan, Angola and Namibia. Several megacities stand out as key hotspots, including Lagos (Nigeria), Juba (South Sudan) and Nouakchott (Mauritania).
Extended Data Fig. 5 Macroplastic emissions into the environment (debris and open burned) by municipality for Eastern Asia and South-eastern Asia in mean kg cap−1 year−1 for the year 2020.
Emissions on a per-capita basis are low for municipalities in HICs, such as Japan and South Korea, but high throughout much of South-eastern Asia, particularly Cambodia. Eastern China has low per-capita emissions owing to recent progress in solid waste management. However, emissions are marginally higher in Western China.
Extended Data Fig. 6 Macroplastic emissions into the environment (debris and open burned) by municipality for Central Asia, Western Asia and Southern Asia in mean kg cap−1 year−1 for the year 2020.
Per-capita emissions are high throughout the region, with the exception of municipalities in HICs on the Arabian Peninsula, such as Saudi Arabia, Qatar and United Arab Emirates. Municipalities in Kyrgyzstan, Kazakhstan, Iraq, Jordan and Syria have relatively high per-capita emissions. Although India has the highest absolute emissions of all countries, on a per-capita basis, most of its municipalities have between 5 and 10 kg cap−1 year−1.
Extended Data Fig. 7 Graphical abstract for a local-to-global emissions inventory of macroplastic pollution.
Municipal level data were cleaned, harmonized and used to train a quantile regression random forest machine learning model, which was used to generate core material flow data for 50,702 municipalities worldwide. These data, combined with explanatory conceptual submodels, were used to populate and define flows in a probabilistic material flow analysis model (Monte Carlo) with 81 processes. The results are presented at municipal level, which showed a large variations in emissions, and then as aggregations at national, income category and global levels. The majority of emissions come from uncollected waste, whereas litter accounts for a comparatively small proportion worldwide. Of the 52.1 Mt year-1 (mean) of emissions produced, approximately 57% wt. are burned in open uncontrolled fires.
Supplementary information
Supplementary Information
This file contains Supplementary Methods, including Supplementary Figs. 1–30, Supplementary Tables 1–40 and Supplementary References. Further Supplementary Data for this article are available from Dryad at https://doi.org/10.5061/dryad.8cz8w9gxb.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Cottom, J.W., Cook, E. & Velis, C.A. A local-to-global emissions inventory of macroplastic pollution. Nature 633, 101–108 (2024). https://doi.org/10.1038/s41586-024-07758-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-024-07758-6
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.