Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histone serotonylation regulates ependymoma tumorigenesis

Abstract

Bidirectional communication between tumours and neurons has emerged as a key facet of the tumour microenvironment that drives malignancy1,2. Another hallmark feature of cancer is epigenomic dysregulation, in which alterations in gene expression influence cell states and interactions with the tumour microenvironment3. Ependymoma (EPN) is a paediatric brain tumour that relies on epigenomic remodelling to engender malignancy4,5; however, how these epigenetic mechanisms intersect with extrinsic neuronal signalling during EPN tumour progression is unknown. Here we show that the activity of serotonergic neurons regulates EPN tumorigenesis, and that serotonin itself also serves as an activating modification on histones. We found that inhibiting histone serotonylation blocks EPN tumorigenesis and regulates the expression of a core set of developmental transcription factors. High-throughput, in vivo screening of these transcription factors revealed that ETV5 promotes EPN tumorigenesis and functions by enhancing repressive chromatin states. Neuropeptide Y (NPY) is one of the genes repressed by ETV5, and its overexpression suppresses EPN tumour progression and tumour-associated network hyperactivity through synaptic remodelling. Collectively, this study identifies histone serotonylation as a key driver of EPN tumorigenesis, and also reveals how neuronal signalling, neuro-epigenomics and developmental programs are intertwined to drive malignancy in brain cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stimulation of serotonergic neurons suppresses EPN tumorigenesis.
Fig. 2: Histone serotonylation is required for EPN tumorigenesis.
Fig. 3: ETV5 regulates EPN progression and repressive chromatin states.
Fig. 4: NPY suppresses EPN progression.
Fig. 5: NPY suppresses EPN-induced brain hyperactivity.

Similar content being viewed by others

Data availability

ChIP–seq and RNA-seq data have been deposited in the NCBI Gene Expression Omnibus under the accession number GSE246033. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048170. All other data in this article are available from the corresponding authors on reasonable request. Uncropped immunoblots associated with Figs. 2, 3 and Extended Data Fig. 7 are provided in the supplementary information. Source data are provided with this paper.

References

  1. Mancusi, R. & Monje, M. The neuroscience of cancer. Nature 618, 467–479 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Winkler, F. et al. Cancer neuroscience: state of the field, emerging directions. Cell 186, 1689–1707 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Mack, S. C. et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506, 445–450 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao, S. et al. Epigenetic alterations of repeated relapses in patient-matched childhood ependymomas. Nat. Commun. 13, 6689 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ng, C. H. et al. A multi-institutional retrospective pooled outcome analysis of molecularly annotated pediatric supratentorial ZFTA-fused ependymoma. Neurooncol. Adv. 5, vdad057 (2023).

    PubMed  PubMed Central  Google Scholar 

  7. Pajtler, K. W. et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27, 728–743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parker, M. et al. C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506, 451–455 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    Article  ADS  PubMed  Google Scholar 

  10. Mack, S. C. et al. Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature 553, 101–105 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Arabzade, A. et al. ZFTA-RELA dictates oncogenic transcriptional programs to drive aggressive supratentorial ependymoma. Cancer Discov. 11, 2200–2215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kupp, R. et al. ZFTA translocations constitute ependymoma chromatin remodeling and transcription factors. Cancer Discov. 11, 2216–2229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozawa, T. et al. A de novo mouse model of C11orf95–RELA fusion-driven ependymoma identifies driver functions in addition to NF-κB. Cell Rep. 23, 3787–3797 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ozawa, T. et al. C11orf95–RELA fusion drives aberrant gene expression through the unique epigenetic regulation for ependymoma formation. Acta Neuropathol. Commun. 9, 36 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Farrelly, L. A. et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567, 535–539 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sardar, D. et al. Induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation. Science 380, eade0027 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, P. et al. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature 606, 550–556 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Curry, R. N. et al. Glioma epileptiform activity and progression are driven by IGSF3-mediated potassium dysregulation. Neuron 111, 682–695 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang-Hobbs, E. et al. Remote neuronal activity drives glioma progression through SEMA4F. Nature 619, 844–850 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krishna, S. et al. Glioblastoma remodelling of human neural circuits decreases survival. Nature 617, 599–607 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pan, Y. et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594, 277–282 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, K. et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578, 166–171 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo, M., Zhou, J. & Liu, Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn. Mem. 22, 452–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steinbusch, H. W. M., Dolatkhah, M. A. & Hopkins, D. A. Anatomical and neurochemical organization of the serotonergic system in the mammalian brain and in particular the involvement of the dorsal raphe nucleus in relation to neurological diseases. Prog. Brain Res. 261, 41–81 (2021).

    Article  PubMed  Google Scholar 

  29. Baraban, S. C., Hollopeter, G., Erickson, J. C., Schwartzkroin, P. A. & Palmiter, R. D. Knock-out mice reveal a critical antiepileptic role for neuropeptide Y. J. Neurosci. 17, 8927–8936 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levine, A. S. & Morley, J. E. Neuropeptide Y: a potent inducer of consummatory behavior in rats. Peptides 5, 1025–1029 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Powell, K. L. et al. Gene therapy mediated seizure suppression in genetic generalised epilepsy: neuropeptide Y overexpression in a rat model. Neurobiol. Dis. 113, 23–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Stanley, B. G. & Leibowitz, S. F. Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci. 35, 2635–2642 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, J. et al. Neuron-derived neuropeptide Y fine-tunes the splenic immune responses. Neuron 110, 1327–1339 e1326 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Zukowska-Grojec, Z. et al. Neuropeptide Y: a novel angiogenic factor from the sympathetic nerves and endothelium. Circ. Res. 83, 187–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez, M. L., Rodriguez, F. D. & Covenas, R. Neuropeptide Y peptide family and cancer: antitumor therapeutic strategies. Int. J. Mol. Sci. 24, 9962 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, Y., Berisha, A. & Borniger, J. C. Neuropeptides in cancer: friend and foe? Adv. Biol. 6, e2200111 (2022).

    Article  Google Scholar 

  37. Celada, P., Puig, M. V. & Artigas, F. Serotonin modulation of cortical neurons and networks. Front. Integr. Neurosci. 7, 25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferezou, I. et al. 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J. Neurosci. 22, 7389–7397 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gellman, R. L. & Aghajanian, G. K. Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res. 600, 63–73 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, F. M. & Hablitz, J. J. Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J. Neurophysiol. 82, 2989–2999 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Li, X. et al. MEK Is a key regulator of gliogenesis in the developing brain. Neuron 75, 1035–1050 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng, Y. T. et al. Inhibitory input directs astrocyte morphogenesis through glial GABABR. Nature 617, 369–376 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Morel, L., Higashimori, H., Tolman, M. & Yang, Y. VGluT1+ neuronal glutamatergic signaling regulates postnatal developmental maturation of cortical protoplasmic astroglia. J. Neurosci. 34, 10950–10962 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. DeMorrow, S. et al. Neuropeptide Y inhibits cholangiocarcinoma cell growth and invasion. Am. J. Physiol. Cell Physiol. 300, C1078–C1089 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kitlinska, J. et al. Differential effects of neuropeptide Y on the growth and vascularization of neural crest-derived tumors. Cancer Res. 65, 1719–1728 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Lv, X. et al. Neuropeptide Y1 receptor inhibits cell growth through inactivating mitogen-activated protein kinase signal pathway in human hepatocellular carcinoma. Med. Oncol. 33, 70 (2016).

    Article  PubMed  Google Scholar 

  49. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sardar, D. et al. Sox9 directs divergent epigenomic states in brain tumor subtypes. Proc. Natl Acad. Sci. USA 119, e2202015119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sengupta, A. & Holmes, A. A discrete dorsal raphe to basal amygdala 5-HT circuit calibrates aversive memory. Neuron 103, 489–505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, F. & LoTurco, J. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J. Neurosci. Methods 207, 172–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsang, Y. H. et al. Functional annotation of rare gene aberration drivers of pancreatic cancer. Nat. Commun. 7, 10500 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants R35-NS132230 and R01-NS124093 to B.D., R01-CA284455 to B.D. and S.C.M., R01-CA223388 to B.D. and J.L.N., and R01NS128184, R01CA280203 and U01CA281823 to S.C.M.; the National Cancer Institute Cancer Target Discovery and Development grant U01-CA217842 to B.D.; DOD-IDEA (CA220510), and an DOD-IMPACT (CA220247) award to S.C.M.; National Cancer Institute Cancer Center Support Grant, P30 CA021765, St. Jude Children’s Research Hospital Research Collaborative on Transcription Regulation in Pediatric Cancer Grant, Alex’s Lemonade Stand Foundation ‘A’ Award to S.C.M; S.C.M is supported by funding from the National Brain Tumor Society and CERN Foundation; the ALSAC Foundation; and the Cancer Prevention Research Institute of Texas (CPRIT) (RP210027 to H.-C.C., F31-CA243382 to E.H.-H., T32-5T32HL092332-19 to B.L., 1K99-DC019668 to D.S. and AHA-23POST1019413 to M.R.W.). We are thankful for support from the David and Eula Wintermann Foundation and the Adrienne Helis Malvin Medical Research Foundation. We thank I. Maze for providing the H3.3-Q5A constructs, and we acknowledge the Optogenetics and Viral Vectors Core at the Jan and Dan Duncan Neurological Research Institute. BCM Mass Spectrometry Proteomics Core is supported by a Dan L. Duncan Comprehensive Cancer Center NIH award (P30 CA125123) and a CPRIT Core Facility Award (RP210227). Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award number P50HD103555 for use of the Microscopy Core facilities and the Animal Phenotyping and Preclinical Endpoints Core facilities. Images in schematics were created using Biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

H.-C.C., S.C.M. and B.D. conceived the project and designed the experiments. H.-C.C., P.H., D.-J.C. and M.R.W. performed the mouse tumour experiments. H.-C.C., B.L. and E.H.-H. performed the barcoded screen. H.-C.C., D.S. and B.L. performed the RNA-seq and ChIP–seq experiments. H.-C.C. performed synaptic staining and immunostaining of tumours. A.J. performed the proteomic analysis. M.M. performed the electrophysiology studies. J.W. performed electrophysiology recording. J.L.N., S.I., G.R., T.E.M., D.W.E. and K.C.B. provided essential reagents. H.-C.C., S.V., H.S. and S.C.M. designed and performed the bioinformatics analyses. H.-C.C., S.C.M. and B.D. wrote the manuscript.

Corresponding authors

Correspondence to Stephen C. Mack or Benjamin Deneen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Michelle Monje and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 DREADD-based activation of neurons by CNO treatment.

a, Schematic of DREADD-hM3Dq activation of ipsilateral cortical neurons in ZRFUS EPN mice. b, Low-magnification image of EPN tumours and representative BrdU staining of EPN tumours after DREADD-hM3Dq activation of ipsilateral cortical neurons via CNO (scale bar = 50 μm). c, Quantification of BrdU staining in saline versus CNO treated EPN tumours (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, PSalinevsAAV_CNO = 0.4522, PCNOvsAAV_CNO = 0.1221, *PAAV_SalinevsAAV_CNO = 0.0337). d, Schematic of DREADD-hM3Dq activation of ipsilateral inhibitory neurons in ZRFUS EPN mice. e, Low-magnification image of EPN tumours and representative BrdU staining of EPN tumours after DREADD-based activation of ipsilateral inhibitory neurons via CNO (scale bar = 50 μm). f, Quantification of BrdU staining in saline versus CNO treated EPN tumours (Saline: n = 3, CNO: n = 3, AAV_Saline: n = 3, AAV_CNO: n = 4, mean ± s.e.m., unpaired two-sided Student’s t-test, PSalinevsAAV_CNO = 0.0770, PCNOvsAAV_CNO = 0.3896, PAAV_SalinevsAAV_CNO = 0.8727). g, Representative BrdU staining in saline and CNO (0.5 and 5 mg per kg) treated EPN tumours (scale bar = 50 μm). h, Immunofluorescence staining of FOS in the ipsilateral cortical neurons in saline versus CNO treated EPN tumours (scale bar = 50 μm). i, Quantification of FOS positive neurons in the ipsilateral cortex in saline versus CNO treated EPN tumours (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, *P = 0.0155). j, Immunofluorescence staining of mCherry and TPH2 in the AAV injected dRN (scale bar = 30 μm). TPH2: tryptophan hydroxylase 2. k, Immunofluorescence staining of FOS in the dRN serotonergic neurons in saline versus CNO treated EPN tumours (scale bar = 50 μm). l, Quantification of FOS positive neurons in the dRN serotonergic neurons in saline versus CNO treated EPN tumours (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, ***P = 0.0005). a and d were created using Biorender.com.

Source Data

Extended Data Fig. 2 Expression of monoamine transporters in EPN.

a, Expression levels of genes under monoamine transporter GO term in human ZRFUS versus non-ZRFUS EPN tumours. b, Expression levels of genes under monoamine transporter GO term in mouse EPN tumours versus non-tumour tissues. c, Log2(FC) of serotonin transporters in human ZRFUS tumours versus non-ZRFUS tumour tissues. d, Log2(FC) of serotonin transporters in mouse EPN tumours versus non-tumour tissues. e, Normalized read counts of serotonin transporters in mouse EPN tumours versus non-tumour tissues (at least n = 10 per group, median ± upper and lower limits, box boundary states upper and lower quartiles). f, Immunofluorescence staining of SLC6A4 in mouse non-tumour cortex and EPN tumours (scale bar = 50 μm). g, Immunofluorescence staining of dopamine transporter (SLC6A3) in mouse substantia nigra, non-tumour cortex and EPN tumours (scale bar = 50 μm).

Source Data

Extended Data Fig. 3 Synaptic staining and H3-5HT staining after dRN manipulation.

a, Low-magnification image of tumour margin and representative higher-magnification images (derived from dashed box) of peritumoral excitatory synaptic staining in saline versus CNO treated tumours from Fig. 1f (scale bar = 10 μm). b, Quantification of excitatory synaptic staining in saline versus CNO treated tumours Fig. 1f (AAV_saline: n = 4, AAV_CNO: n = 3, mean ± s.e.m., two-sided Wilcoxon rank sum test, P = 0.6286). c, Low-magnification view of tumour margin and representative higher-magnification images (derived from dashed box) of peritumoral inhibitory synaptic staining in saline versus CNO treated tumours from Fig. 1f (scale bar = 10 μm). d, Quantification of inhibitory synaptic staining in saline versus CNO treated tumours from Fig. 1f (AAV_saline: n = 4, AAV_CNO: n = 3, mean ± s.e.m., unpaired two-sided Student’s t-test, P = 0.7481). e, Low-magnification image of tumour margin and representative higher-magnification images (derived from dashed box) of peritumoral excitatory synaptic staining in saline versus CNO treated tumours from Fig. 1i (scale bar = 10 μm). f, Quantification of excitatory synaptic staining in saline versus CNO treated tumours from Fig. 1i (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, P = 0.6460). g, Low-magnification image of tumour margin and representative higher-magnification images (derived from dashed box) of peritumoral inhibitory synaptic staining in saline versus CNO treated tumours from Fig. 1i (scale bar = 10 μm). h, Quantification of inhibitory synaptic staining in saline versus CNO treated tumours from Fig. 1i (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, P = 0.9864). i, Immunofluorescence staining of H3-5HT in saline versus CNO treated tumours from Fig. 1f (scale bar = 10 μm). j, Quantification of H3-5HT intensity in saline versus CNO treated tumours from Fig. 1f (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, P = 0.2894). k, Immunofluorescence staining of H3-5HT in saline versus CNO treated tumours from Fig. 1i (scale bar = 10 μm). l, Quantification of H3-5HT intensity in saline versus CNO treated tumours from Fig. 1i (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, *P = 0.0465).

Source Data

Extended Data Fig. 4 Tumour proliferation and ETV5 expression in H3.3-Q5A EPN tumours.

a, Immunofluorescence staining of H3-5HT in H3.3-WT and H3.3-Q5A EPN tumours (scale bar = 25 μm). b, Quantification of H3-5HT intensity in H3.3 control and H3.3-Q5A (n = 4 per group, mean ± s.e.m., two-sided Wilcoxon rank sum test, *P = 0.0286) c, Representative Ki67 staining of EPN control versus H3.3 wild-type and H3.3-Q5A tumours (scale bar = 50 μm). d, Quantification of Ki67 staining in EPN control versus H3.3 wild-type and H3.3-Q5A tumours (EPN control: n = 3, H3.3 wild-type: n = 5, H3.3-Q5A: n = 4, mean ± s.e.m., unpaired two-sided Student’s t-test, PEPNcontrolvsH3.3wild-type = 0.9040, **PEPNcontrolvsH3.3-Q5A = 0.0015, ****PH3.3wild-typevsH3.3-Q5A = 1.59E-05). e, Representative ETV5 staining of EPN control versus H3.3 wild-type and H3.3-Q5A tumours (scale bar = 25 μm). f, Quantification of ETV5 staining in EPN control versus H3.3 wild-type and H3.3-Q5A tumours (EPN control: n = 3, H3.3 wild-type: n = 3, H3.3-Q5A: n = 4, mean ± s.e.m., unpaired two-sided Student’s t-test, PEPNcontrolvsH3.3wild-type = 0.6180, **PEPNcontrolvsH3.3-Q5A = 0.0053, *PH3.3wild-typevsH3.3-Q5A = 0.0398).

Source Data

Extended Data Fig. 5 SLC6A4-LOF EPN analyses, expression of serotonin synthetase and SSRI treatment in EPN.

a, Kaplan–Meier survival curve of EPN control (n = 19, median = 74 days) and SLC6A4-LOF (n = 14, median = 95 days, log-rank test, P = 0.1177). b, Representative Ki67 staining of EPN control versus SLC6A4-LOF tumours (scale bar = 50 μm). c, Quantification of Ki67 staining in EPN control versus SLC6A4-LOF tumours (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, **P = 0.0055). d, Representative H3-5HT staining of EPN control versus SLC6A4-LOF tumours (scale bar = 25 μm). e, Quantification of H3-5HT intensity in EPN control versus Slc6a4-LOF tumours (n = 4 per group, mean ± s.e.m., two-sided Wilcoxon rank sum test, *P = 0.0286). f, Immunofluorescent staining of TPH2 in mouse dRN (positive control), non-tumour cortex, and EPN tumour (scale bar = 50 μm) g, Quantification of TPH2 intensity in mouse dRN, non-tumour cortex, and EPN tumour (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, ****PdRNvsnon-tumourcortex = 3.76E-05, **PdRNvsEPNtumour = 3.73E-05, Pnon-tumourcortexvsEPNtumour = 0.7262). h, Schematic of DMSO or SSRI treatment in EPN i, Representative H3-5HT staining of DMSO versus sertraline-HCl treated tumours (scale bar = 25 μm). j, Quantification of H3-5HT intensity in DMSO versus sertraline-HCl treated tumours (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, P = 0.0743). h was created using Biorender.com.

Source Data

Extended Data Fig. 6 H3-5HT ChIP–seq and ETV5 ChIP–seq analyses in EPN.

a, Venn diagram depicting core TFs with H3-5HT peaks in mouse EPN tumours. b, ETV5 ChIP–seq heat map profiles in mouse EPN tumours and Venn diagram depicting genes overlapped between downregulated DEGs acquiring H3K27me3 peaks in ETV5-GOF tumours and ETV5 annotated genes.

Extended Data Fig. 7 Validation of candidates from functional screen.

a, Immunoblots of LHX2, LHX4, ETV5, and KLF12 in mouse non-tumour cortex versus EPN tumours (n = 3 per group). b, Kaplan–Meier survival curves of EPN control (n = 51, median = 70 days), LHX2-GOF (n = 23, median = 82 days, log-rank test, P = 0.9640), LHX4-GOF (n = 9, median=114 days, log-rank test, P = 0.3532), and KLF12-GOF (n = 23, median = 77 days, log-rank test, P = 0.7588). c, Immunoblots of LHX2, LHX4, and KLF12 in control versus corresponding GOF tumours. d, Immunoblots of ETV5 in control versus ETV5-GOF and ETV5-LOF tumours. e, RT–qPCR fold enrichment of ETV5 and Etv5 transcript (ddCt) in control versus ETV5-GOF and ETV5-LOF tumours (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, GOF: **P = 0.0068, LOF: ***P = 0.0007). f, Surveyor Nuclease Digestion assay of Etv5 gRNA efficiency. Mouse non-tumour cortex: negative control. Two primer sets were used, and gel images are presented in left and right panel. Asterisks label the nuclease digested bands. g, Representative BrdU staining of control versus ETV5-GOF and ETV5-LOF tumours (scale bar = 50 μm). h, Quantification of BrdU staining in control versus ETV5-GOF and ETV5-LOF tumours (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, GOF: **P = 0.00258, LOF: ***P = 0.000976). i, Immunoblots of H3K27ac and H3K27me3 in control versus ETV5-GOF tumours. Total H3: loading control. j, Ring chart showing percentage of H3K27me3 sites in ETV5-GOF tumours carrying ETS motif allowing 0 mismatch at 1,000 bp from peak centre. k, GO-terms analysis of ETV5 binding partners in mouse EPN tumours performed using Enrichr (two-sided Fisher’s exact test). l, RT–qPCR fold enrichment of gene transcript (ddCt) in control versus ETV5-GOF tumours (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, Npy: ***P = 0.00024, Gabra5: P = 0.4342, Chrm4: *P = 0.0239, Kcnmb4: *P = 0.0109, Nptx2: P = 0.2549). m, H3K27me3 ChIP–seq peaks at Npy and Chrm4 locus in control and ETV5-GOF tumours.

Source Data

Extended Data Fig. 8 Comparison of Kaplan–Meier survival curves between sexes.

ac, All Kaplan–Meier survival curves (a), table of median survival (b) and comparison of log-rank test results (c) between groups divided by sex.

Source Data

Extended Data Fig. 9 Analysis of NPY-GOF EPN tumours.

a, RT–qPCR fold enrichment of NPY transcript (ddCt) in control versus NPY-GOF tumours (n = 3 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, *P = 0.0255). b, RT–qPCR fold enrichment of Npy2r transcript (ddCt) in mouse non-tumour cortex and EPN tumours (n = 3 per group, as mean ± s.e.m., unpaired two-sided Student’s t-test, *P = 0.0215). c, Immunofluorescence staining of NPY2R in mouse cortex. NeuN: neuronal marker, Aldh1l1: astrocytic marker (scale bar = 50 μm). d, Low-magnification image of the tumour margin and representative images of NPY2R staining in mouse non-tumour and EPN tumours (scale bar = 50 μm). Top right panel: Quantification of NPY2R intensity normalized to DAPI in mouse non-tumour cortex versus EPN tumours. (n = 4 per group, mean ± s.e.m., unpaired two-sided Student’s t-test, **P = 0.0014). e, GO-terms analysis of the downregulated DEGs in NPY-GOF tumours versus control performed using Enrichr (two-sided Fisher’s exact test). f, Zoom-out EEG traces from mice bearing control and NPY-GOF tumours.

Source Data

Supplementary information

Supplementary information

Uncropped immunoblots associated with Figs. 2, 3 and Extended Data Fig. 7

Reporting Summary

Peer Review file

Supplementary Tables 1-17

Supplementary Table 1. DEGs from RNA-seq data of patients with ZRFUS versus non-ZRFUS EPN; associated with Fig. 1. Supplementary Table 2. Motif analysis of genes with ZRFUS-HA and H3-5HT overlapped genes; associated with Fig. 2. Supplementary Table 3. H3-5HT annotated genes and core TF lists; associated with Fig. 2. Supplementary Table 4. TF lists in barcode screen; associated with Fig. 3. Supplementary Table 5. EPNCtrl_H3K27ac annotated genes; associated with Fig. 3. Supplementary Table 6. EPNETV5GOF_H3K27ac annotated genes; associated with Fig. 3. Supplementary Table 7. EPNCtrl_H3K27me3 annotated genes; associated with Fig. 3. Supplementary Table 8. EPNETV5GOF_H3K27me3 annotated genes; associated with Fig. 3. Supplementary Table 9. ETV5 IP–MS list; associated with Fig. 3 Supplementary Table 10. GO analysis of ETV5 interacting proteins in EPN tumour exclusively; analysed and acquired table from Enrichr datasets, associated with Extended Data Fig. 7. Supplementary Table 11. DEGs from RNA-seq data of mouse ETV5-GOF versus EPN Ctrl tumours; associated with Fig.3. Supplementary Table 12. EPN_ETV5 annotated genes; associated with Extended Data Fig. 6. Supplementary Table 13. Overlapped genes between downregulated DEGs which gain H3K27me3 peaks in mouse ETV5-GOF tumours; associated with Fig. 3. Supplementary Table 14. GO analysis of downregulated DEGs which gain H3K27me3 peaks in mouse ETV5-GOF tumours; analysed and acquired table from Enrichr datasets, associated with Fig. 3. Supplementary Table 15. DEGs from RNA-seq data of mouse NPY-GOF versus EPN Ctrl tumours; associated with Fig.4. Supplementary Table 16. GO analysis of downregulated DEGs in NPY-GOF versus EPN Ctrl tumours; analysed and acquired table from Enrichr datasets, associated with Extended Data Fig. Supplementary Table 17. Primer, antibody, and plasmid tables

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HC., He, P., McDonald, M. et al. Histone serotonylation regulates ependymoma tumorigenesis. Nature 632, 903–910 (2024). https://doi.org/10.1038/s41586-024-07751-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07751-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer