Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

No massive black holes in the Milky Way halo

Abstract

The gravitational wave detectors have shown a population of massive black holes that do not resemble those observed in the Milky Way1,2,3 and whose origin is debated4,5,6. According to a possible explanation, these black holes may have formed from density fluctuations in the early Universe (primordial black holes)7,8,9, and they should comprise several to 100% of dark matter to explain the observed black hole merger rates10,11,12. If these black holes existed in the Milky Way dark matter halo, they would cause long-timescale gravitational microlensing events lasting years13. The previous experiments were not sufficiently sensitive to such events14,15,16,17. Here we present the results of the search for long-timescale microlensing events among the light curves of nearly 80 million stars located in the Large Magellanic Cloud that were monitored for 20 years by the Optical Gravitational Lensing Experiment survey18. We did not find any events with timescales longer than 1 year, whereas all shorter events detected may be explained by known stellar populations. We find that compact objects in the mass range from 1.8 × 10−4M to 6.3M cannot make up more than 1% of dark matter, and those in the mass range from 1.3 × 10−5M to 860 M cannot make up more than 10% of dark matter. Thus, primordial black holes in this mass range cannot simultaneously explain a substantial fraction of dark matter and gravitational wave events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The 95% upper limits on PBHs (and other compact objects) as constituents of dark matter.

Similar content being viewed by others

Data availability

The data used to perform the analysis (event detection efficiencies, source star counts and posterior distributions of event parameters) are publicly available at https://www.astrouw.edu.pl/ogle/ogle4/LMC_OPTICAL_DEPTH/ and Zenodo (https://doi.org/10.5281/zenodo.10879577) (ref. 57).

Code availability

The custom codes for the simulation of microlensing events towards the LMC and the calculation of limits on PBHs as dark matter are available upon request from the corresponding author.

References

  1. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  2. Abbott, B. P. et al. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019).

    CAS  Google Scholar 

  3. Abbott, R. et al. Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog. Astrophys. J. Lett. 913, L7 (2021).

    Article  ADS  CAS  Google Scholar 

  4. Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database – I. Coalescing binary black holes originating from globular clusters. Mon. Not. R. Astron. Soc. 464, L36–L40 (2017).

    Article  ADS  CAS  Google Scholar 

  6. Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian dynamics in dense star clusters: highly eccentric, highly spinning, and repeated binary black hole mergers. Phys. Rev. Lett. 120, 151101 (2018).

    Article  ADS  PubMed  Google Scholar 

  7. Bird, S. et al. Did LIGO detect dark matter? Phys. Rev. Lett. 116, 201301 (2016).

    Article  ADS  PubMed  Google Scholar 

  8. Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial black hole scenario for the gravitational-wave event GW150914. Phys. Rev. Lett. 117, 061101 (2016).

    Article  ADS  PubMed  Google Scholar 

  9. Clesse, S. & García-Bellido, J. The clustering of massive primordial black holes as dark matter: measuring their mass distribution with Advanced LIGO. Phys. Dark Universe 15, 142–147 (2017).

    Article  ADS  Google Scholar 

  10. Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021).

    Article  Google Scholar 

  11. Jedamzik, K. Consistency of primordial black hole dark matter with LIGO/Virgo merger rates. Phys. Rev. Lett. 126, 051302 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmol. Astropart. Phys. 2023, 004 (2023).

    Article  MathSciNet  Google Scholar 

  13. Paczyński, B. Gravitational microlensing by the Galactic halo. Astrophys. J. 304, 1–5 (1986).

    Article  ADS  Google Scholar 

  14. Alcock, C. et al. The MACHO Project: microlensing results from 5.7 years of Large Magellanic Cloud observations. Astrophys. J. 542, 281–307 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Tisserand, P. et al. Limits on the Macho content of the Galactic halo from the EROS-2 Survey of the Magellanic Clouds. Astron. Astrophys. 469, 387–404 (2007).

    Article  ADS  Google Scholar 

  16. Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds – IV. OGLE-III SMC data and final conclusions on MACHOs. Mon. Not. R. Astron. Soc. 416, 2949–2961 (2011).

    Article  ADS  Google Scholar 

  17. Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M < M < 1000 M. Astron. Astrophys. 664, A106 (2022).

    Article  Google Scholar 

  18. Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: fourth phase of the Optical Gravitational Lensing Experiment. Acta Astronom. 65, 1–38 (2015).

    ADS  Google Scholar 

  19. Udalski, A. The Optical Gravitational Lensing Experiment. Real time data analysis systems in the OGLE-III survey. Acta Astronom. 53, 291–305 (2003).

    ADS  Google Scholar 

  20. Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 yr of OGLE observations. Astrophys. J. Suppl. Ser. 273, 4 (2024).

    Article  Google Scholar 

  21. Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. Astrophys. J. Suppl. Ser. 166, 534–548 (2006).

    Article  ADS  CAS  Google Scholar 

  22. Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017).

    Article  ADS  PubMed  Google Scholar 

  23. Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994).

    Article  ADS  Google Scholar 

  24. Cautun, M. et al. The Milky Way total mass profile as inferred from Gaia DR2. Mon. Not. R. Astron. Soc. 494, 4291–4313 (2020).

    Article  ADS  CAS  Google Scholar 

  25. Han, C. & Gould, A. Stellar contribution to the Galactic bulge microlensing optical depth. Astrophys. J. 592, 172–175 (2003).

    Article  ADS  Google Scholar 

  26. Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. Mon. Not. R. Astron. Soc. 487, 2685–2700 (2019).

    Article  ADS  CAS  Google Scholar 

  27. Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. Astron. Astrophys. 678, A208 (2023).

    Article  CAS  Google Scholar 

  28. Olejak, A., Belczynski, K., Bulik, T. & Sobolewska, M. Synthetic catalog of black holes in the Milky Way. Astron. Astrophys. 638, A94 (2020).

    Article  ADS  CAS  Google Scholar 

  29. Abramowicz, M., Bejger, M., Udalski, A. & Wielgus, M. A robust test of the existence of primordial black holes in galactic dark matter halos. Astrophys. J. Lett. 935, L28 (2022).

    Article  ADS  Google Scholar 

  30. Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nat. Astron. 3, 524–534 (2019).

    Article  ADS  Google Scholar 

  31. Clanton, C. & Gaudi, B. S. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. I. Methodology. Astrophys. J. 791, 90 (2014).

    Article  ADS  Google Scholar 

  32. Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The circular velocity curve of the Milky Way from 5 to 25 kpc. Astrophys. J. 871, 120 (2019).

    Article  ADS  CAS  Google Scholar 

  33. Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    Article  ADS  CAS  Google Scholar 

  34. Fattahi, A. et al. The apostle project: local group kinematic mass constraints and simulation candidate selection. Mon. Not. R. Astron. Soc. 457, 844–856 (2016).

    Article  ADS  CAS  Google Scholar 

  35. Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. Mon. Not. R. Astron. Soc. 467, 179–207 (2017).

    ADS  CAS  Google Scholar 

  36. Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. Astrophys. J. Lett. 372, L79–L82 (1991).

    Article  ADS  Google Scholar 

  37. Varma, V. et al. Evidence of large recoil velocity from a black hole merger signal. Phys. Rev. Lett. 128, 191102 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. Mon. Not. R. Astron. Soc. 485, 4726–4742 (2019).

    Article  ADS  CAS  Google Scholar 

  39. van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud rotation field in three dimensions. Astrophys. J. 781, 121 (2014).

    Article  ADS  Google Scholar 

  40. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article  ADS  Google Scholar 

  41. Gyuk, G., Dalal, N. & Griest, K. Self-lensing models of the Large Magellanic Cloud. Astrophys. J. 535, 90–103 (2000).

    Article  ADS  Google Scholar 

  42. Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019).

    Article  ADS  PubMed  Google Scholar 

  43. Jetzer, PH., Mancini, L. & Scarpetta, G. Microlensing towards the Large Magellanic Cloud. Astron. Astrophys. 393, 129–147 (2002).

    Article  ADS  Google Scholar 

  44. Sajadian, S. On the detection of free-floating planets through microlensing towards the Magellanic Clouds. Mon. Not. R. Astron. Soc. 506, 3615–3628 (2021).

    Article  ADS  Google Scholar 

  45. van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New understanding of Large Magellanic Cloud structure, dynamics, and orbit from carbon star kinematics. Astron. J. 124, 2639–2663 (2002).

    Article  ADS  Google Scholar 

  46. Mancini, L., Calchi Novati, S., Jetzer, Ph. & Scarpetta, G. LMC self-lensing from a new perspective. Astron. Astrophys. 427, 61–77 (2004).

    Article  ADS  Google Scholar 

  47. Calchi Novati, S., Mancini, L., Scarpetta, G. & Wyrzykowski, Ł. Large Magellanic Cloud self-lensing for OGLE-II microlensing observations. Mon. Not. R. Astron. Soc. 400, 1625–1631 (2009).

    Article  ADS  Google Scholar 

  48. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC Hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  49. Gould, A., Miralda-Escude, J. & Bahcall, J. N. Microlensing events: thin disk, thick disk, or halo? Astrophys. J. Lett. 423, L105 (1994).

    Article  ADS  Google Scholar 

  50. Evans, N. W. & Kerins, E. Is the Large Magellanic Cloud a large microlensing cloud? Astrophys. J. 529, 917–924 (2000).

    Article  ADS  Google Scholar 

  51. Kim, S. et al. An H i aperture synthesis mosaic of the Large Magellanic Cloud. Astrophys. J. 503, 674–688 (1998).

    Article  ADS  CAS  Google Scholar 

  52. Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. Mon. Not. R. Astron. Soc. 528, 693–710 (2024).

    Article  ADS  Google Scholar 

  53. Gaia Collaboration. et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  54. Gaia Collaboration. et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Article  Google Scholar 

  55. Gaia Collaboration. et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron. Astrophys. 616, A12 (2018).

    Article  Google Scholar 

  56. Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. Astron. Astrophys. 649, A2 (2021).

    Article  Google Scholar 

  57. Mróz, P. Data for: ‘Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations’. Zenodo https://doi.org/10.5281/zenodo.10879577 (2024).

Download references

Acknowledgements

We thank all the OGLE observers for their contribution to the collection of the photometric data over the decades. We thank T. Bulik for his comments on the paper. This research was funded in part by the National Science Centre, Poland, grant OPUS 2021/41/B/ST9/00252 awarded to P.M.

Author information

Authors and Affiliations

Authors

Contributions

P.M. led the analysis and interpretation of the data and wrote the paper. A.U. is the principal investigator of the OGLE project and was responsible for the data reduction. All authors collected the OGLE photometric observations and reviewed, discussed and commented on the presented results and on the paper.

Corresponding author

Correspondence to Przemek Mróz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Expected number of microlensing events from a PBH dark matter halo.

a, Number of microlensing events as a function of their Einstein timescale that should have been discovered by OGLE assuming that the entire dark matter were composed of PBHs of 0.01 (red), 1 (blue), and 100 M (green). b, Number of gravitational microlensing events expected to be detected by OGLE if entire dark matter were composed of compact objects of a given mass \({N}_{\exp }(f=1,M)\). Thin solid lines correspond to fields observed during OGLE-III and OGLE-IV phases (from 2001 to 2020), dashed lines – fields observed during OGLE-IV only (from 2010 to 2020). Blue lines mark the contribution from the Milky Way dark matter halo, red lines – the LMC dark matter halo.

Extended Data Fig. 2 95% upper limits on PBHs as constituents of dark matter.

a, Dependence of the limits on the Milky Way halo model. The black solid line marks limits for the Cautun et al. (2020)24 model. The blue dashed line—Jiao et al. (2023)27 model. b, Limits as a function of the limiting magnitude.

Extended Data Fig. 3 Predictions for a multi-peak PBH mass function.

a, Multi-peak mass function of PBHs from ref. 10 (assuming spectral index \({\widetilde{n}}_{{\rm{s}}}=0.960\)). b, Expected distribution of event timescales assuming that the entire dark matter is composed of PBHs with the mass function from ref. 10. In total, we should have detected 513 microlensing events.

Extended Data Fig. 4 Poisson probability of observing 13 events as a function of the expected number of events in the model.

The blue and red dashed lines mark the models by ref. 24 and ref. 25, respectively.

Extended Data Fig. 5 Expected number of microlensing events from known stellar populations in the LMC and Milky Way disk in OGLE-IV fields.

The Milky Way disk model used in calculations is from Han & Gould (2003)25. Black asterisks mark events that are a part of the statistical sample of ref. 20, black dots mark other events.

Extended Data Fig. 6 Expected distributions of timescales and parallaxes of microlensing events from known stellar populations in the LMC and Milky Way disk.

a, b, Expected distributions of Einstein timescales for the Han & Gould (2003)25 and Cautun et al. (2020)24 Milky Way disk models. Vertical blue lines mark the detected events. c, d, Expected distributions of microlensing parallaxes.

Extended Data Fig. 7 Contours of the likelihood function (Equation (1)).

a, Contours for the Han & Gould (2003)25 Milky Way disk model. b, Contours for the Cautun et al. (2020)24 Milky Way disk model. The color codes the difference \(\Delta {\chi }^{2}\equiv 2(\mathrm{ln}{{\mathcal{L}}}_{\max }-\mathrm{ln}{\mathcal{L}})\).

Extended Data Fig. 8 Gaia EDR3 proper motions of stars in the LMC

.

Extended Data Table 1 Expected number of microlensing events from known stellar populations in the Milky Way disk and the LMC
Extended Data Table 2 Parameters of the LMC proper motion model

Supplementary information

Supplementary Table 1

The 95% upper limits on primordial black holes (and other compact objects) as constituents of dark matter

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mróz, P., Udalski, A., Szymański, M.K. et al. No massive black holes in the Milky Way halo. Nature 632, 749–751 (2024). https://doi.org/10.1038/s41586-024-07704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07704-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing