Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydroamination of alkenes with dinitrogen and titanium polyhydrides

Abstract

An ideal synthesis of alkyl amines would involve the direct use of abundant and easily accessible molecules such as dinitrogen (N2) and feedstock alkenes1,2,3,4. However, this ambition remains a great challenge as it is usually difficult to simultaneously activate both N2 and a simple alkene and combine them together through carbon–nitrogen (C–N) bond formation. Currently, the synthesis of alkyl amines relies on the use of ammonia produced through the Haber–Bosch process and prefunctionalized electrophilic carbon sources. Here we report the hydroamination of simple alkenes with N2 in a trititanium hydride framework, which activates both alkenes and N2, leading to selective C–N bond formation and providing the corresponding alkyl amines on further hydrogenation and protonation. Computational studies reveal key mechanistic details of N2 activation and selective C–N bond formation. This work demonstrates a strategy for the transformation of N2 and simple hydrocarbons into nitrogen-containing organic compounds mediated by a multinuclear hydride framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activation and transformation of propylene and N2 in a trititanium hydride framework 1.
Fig. 2: X-ray structural analysis.
Fig. 3: Computational analysis for N2 activation and N–C bond formation from 4a to 5 and further reaction of 5.
Fig. 4: Transformation of other alkenes and N2 to alkyl amines.

Similar content being viewed by others

Data availability

All data resulting from the experimental and computational studies of this work are included within this article and the Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2226119 (1′), 2184614 (3), 2184610 (4a), 2285950 (4f′), 2226120 (4g), 2184611 (5), 2184612 (6), 2184613 (8a) and 2226121 (8g′). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Streiff, S. & Jérôme, F. Hydroamination of non-activated alkenes with ammonia: a holy grail in catalysis. Chem. Soc. Rev. 50, 1512–1521 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Masero, F., Perrin, M. A., Dey, S. & Mougel, V. Dinitrogen fixation: rationalizing strategies utilizing molecular complexes. Chem. Eur. J. 27, 3892–3928 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, S., Loose, F. & Chirik, P. J. Beyond ammonia: nitrogen–element bond forming reactions with coordinated dinitrogen. Chem. Rev. 120, 5637–5681 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Lv, Z.-J. et al. Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N−C bond formation. Natl Sci. Rev. 7, 1564–1583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jennings, J. R. (ed.) Catalytic Ammonia Synthesis: Fundamentals and Practice (Springer, 1991).

  6. Liu, H. Ammonia Synthesis Catalysts: Innovation and Practice (World Scientific Publishing & Chemical Industry Press China, 2013).

  7. Amines Market—By Type (Ethanolamine, Monoethanolamine, Diethanolamine, Triethanolamine, Methyl diethanolamine (MDEA), By Application, By Function & Forecast, 2024–2032 (GMI, 2024); https://www.gminsights.com/industry-analysis/amines-market.

  8. Arpe, H.-J. Industrial Organic Chemistry (Wiley-VCH, 2010).

  9. Zhuo, Q., Zhou, X., Shima, T. & Hou, Z. Dinitrogen activation and addition to unsaturated C–E (E = C, N, O, S) bonds mediated by transition metal complexes. Angew. Chem. Int. Ed. 62, e202218606 (2023).

    Article  CAS  Google Scholar 

  10. Shima, T., Zhuo, Q. & Hou, Z. Dinitrogen activation and transformation by multimetallic polyhydride complexes. Coord. Chem. Rev. 472, 214766 (2022).

    Article  CAS  Google Scholar 

  11. Yang, J.-H. et al. Fixation of N2 into value-added organic chemicals. ACS Catal. 12, 2898–2906 (2022).

    Article  CAS  Google Scholar 

  12. Forrest, S. J. K., Schluschaß, B., Yuzik-Klimova, E. Y. & Schneider, S. Nitrogen fixation via splitting into nitrido complexes. Chem. Rev. 121, 6522–6587 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Burford, R. J., Yeo, A. & Fryzuk, M. D. Dinitrogen activation by group 4 and group 5 metal complexes supported by phosphine-amido containing ligand manifolds. Coord. Chem. Rev. 334, 84–99 (2017).

    Article  CAS  Google Scholar 

  14. Nishibayashi, Y. (ed.) Nitrogen Fixation (Springer, 2017).

  15. Walter, M. D. Recent advances in transition metal-catalyzed dinitrogen activation. Adv. Organomet. Chem. 65, 261–377 (2016).

    Article  CAS  Google Scholar 

  16. Mori, M. Activation of nitrogen for organic synthesis. J. Organomet. Chem. 689, 4210–4227 (2004).

    Article  CAS  Google Scholar 

  17. Zhuo, Q. et al. Aza-Michael addition of dinitrogen to α,β-unsaturated carbonyl compounds in a dititanium framework. J. Am. Chem. Soc. 145, 22803–22813 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Xie, S.-J. et al. Direct incorporation of dinitrogen into an aliphatic C–H bond. J. Am. Chem. Soc. 145, 6773–6780 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Zhuo, Q. et al. Dinitrogen cleavage and functionalization by carbon dioxide at a dititanium dihydride framework. J. Am. Chem. Soc. 144, 6972–6980 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Itabashi, T. et al. Direct synthesis of cyanate anion from dinitrogen catalysed by molybdenum complexes bearing pincer-type ligand. Nat. Commun. 13, 6161 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, K. et al. Synthesis of arylamines and N-heterocycles by direct catalytic nitrogenation using N2. Nat. Commun. 12, 248 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, J. et al. Conversion of dinitrogen into nitrile: cross-metathesis of N2-derived molybdenum nitride with alkynes. Angew. Chem. Int. Ed. 60, 12242–12247 (2021).

    Article  CAS  Google Scholar 

  23. Falcone, M. et al. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 547, 332–335 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Nakanishi, Y., Ishida, Y. & Kawaguchi, H. Nitrogen–carbon bond formation by reactions of a titanium–potassium dinitrogen complex with carbon dioxide, tert-butyl isocyanate, and phenylallene. Angew. Chem. Int. Ed. 56, 9193–9197 (2017).

    Article  CAS  Google Scholar 

  25. Guru, M. M., Shima, T. & Hou, Z. Conversion of dinitrogen to nitriles at a multinuclear titanium framework. Angew. Chem. Int. Ed. 55, 12316–12320 (2016).

    Article  CAS  Google Scholar 

  26. Klopsch, I. et al. Conversion of dinitrogen into acetonitrile under ambient conditions. Angew. Chem. Int. Ed. 55, 4786–4789 (2016).

    Article  CAS  Google Scholar 

  27. Semproni, S. P. & Chirik, P. J. N−H and N−C bond formation with an N2-derived dihafnium μ-nitrido complex. Organometallics 33, 3727–3737 (2014).

    Article  CAS  Google Scholar 

  28. Semproni, S. P. & Chirik, P. J. Synthesis of a base-free hafnium nitride from N2 cleavage: a versatile platform for dinitrogen functionalization. J. Am. Chem. Soc. 135, 11373–11383 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Figueroa, J. S., Piro, N. A., Clough, C. R. & Cummins, C. C. A nitridoniobium(V) reagent that effects acid chloride to organic nitrile conversion: synthesis via heterodinuclear (Nb/Mo) dinitrogen cleavage, mechanistic insights, and recycling. J. Am. Chem. Soc. 128, 940–950 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Morello, L., Love, J. B., Patrick, B. O. & Fryzuk, M. D. Carbon–nitrogen bond formation via the reaction of terminal alkynes with a dinuclear side-on dinitrogen complex. J. Am. Chem. Soc. 126, 9480–9481 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Mou, L.-H. et al. Mutual functionalization of dinitrogen and methane mediated by heteronuclear metal cluster anions CoTaC2. Chem. Sci. 13, 9366–9372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, X. et al. Direct amination of benzene with molecular nitrogen enabled by plasma–liquid interactions. Angew. Chem. Int. Ed. 61, e2022036 (2022).

    Google Scholar 

  33. McWilliams, S. F. et al. Coupling dinitrogen and hydrocabons through aryl migration. Nature 584, 221–226 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhutto, S. M., Hooper, R. X., Mercado, B. Q. & Holland, P. L. Mechanism of nitrogen–carbon bond formation from iron(IV) disilylhydrazido intermediates during N2 reduction. J. Am. Chem. Soc. 145, 4626–4637 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Shima, T. et al. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340, 1549–1552 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hu, S., Shima, T. & Hou, Z. Carbon–carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride. Nature 512, 413–415 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Shoshani, M. M. & Johnson, S. A. Cooperative carbon-atom abstraction from alkenes in the core of a pentanuclear nickel cluster. Nat. Chem. 9, 1282–1285 (2017).

    Article  CAS  Google Scholar 

  38. Hu, S. et al. Hydrodenitrogenation of pyridines and quinolines at a multinuclear titanium hydride framework. Nat. Commun. 8, 1866 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Takemori, T., Inagaki, A. & Suzuki, H. A novel type of carbon–carbon double bond cleavage of 1,1-disubstituted alkenes on a triruthenium polyhydrido cluster. J. Am. Chem. Soc. 123, 1762–1763 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Tahara, A. et al. Metathesis reaction of hydrocarbyl ligands across the triruthenium plane. Angew. Chem. Int. Ed. 49, 5898–5901 (2010).

    Article  CAS  Google Scholar 

  41. del Horno, E. et al. Dinitrogen binding at a trititanium chloride complex and its conversion to ammonia under ambient conditions. Angew. Chem. Int. Ed. 61, e202204544 (2022).

    Article  Google Scholar 

  42. Fryzuk, M. D. et al. New mode of coordination for the dinitrogen ligand: formation, bonding, and reactivity of a tantalum complex with a bridging N2 unit that is both side-on and end-on. J. Am. Chem. Soc. 123, 3960–3973 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a JSPS KAKENHI Grant-in-Aid for Scientific Research (A) (JP23H00300) and (B) (JP23H01981), and an Incentive Research Grant from RIKEN. We acknowledge RICC (RIKEN Integrated Cluster of Clusters) and Hefei Advanced Computing Center for computational support. We thank A. Karube, K. Suzuki, T. Nakamura, E. Imai and Y. Oshima for their support in microelemental analyses and mass spectral and electron spin resonance measurements.

Author information

Authors and Affiliations

Authors

Contributions

T.S., Q.Z., X.Z. and R.O. carried out the experiments. P.W. and G.L. carried out density functional theory calculations. T.S., Q.Z. and Z.H. analysed the data and co-wrote the paper with support from X.Z. Z.H. directed the project.

Corresponding authors

Correspondence to Takanori Shima, Gen Luo or Zhaomin Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Figs. 1–106 and Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shima, T., Zhuo, Q., Zhou, X. et al. Hydroamination of alkenes with dinitrogen and titanium polyhydrides. Nature 632, 307–312 (2024). https://doi.org/10.1038/s41586-024-07694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07694-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing