Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Onset of coupled atmosphere–ocean oxygenation 2.3 billion years ago

Abstract

The initial rise of molecular oxygen (O2) shortly after the Archaean–Proterozoic transition 2.5 billion years ago was more complex than the single step-change once envisioned. Sulfur mass-independent fractionation records suggest that the rise of atmospheric O2 was oscillatory, with multiple returns to an anoxic state until perhaps 2.2 billion years ago1,2,3. Yet few constraints exist for contemporaneous marine oxygenation dynamics, precluding a holistic understanding of planetary oxygenation. Here we report thallium (Tl) isotope ratio and redox-sensitive element data for marine shales from the Transvaal Supergroup, South Africa. Synchronous with sulfur isotope evidence of atmospheric oxygenation in the same shales3, we found lower authigenic 205Tl/203Tl ratios indicative of widespread manganese oxide burial on an oxygenated seafloor and higher redox-sensitive element abundances consistent with expanded oxygenated waters. Both signatures disappear when the sulfur isotope data indicate a brief return to an anoxic atmospheric state. Our data connect recently identified atmospheric O2 dynamics on early Earth with the marine realm, marking an important turning point in Earth’s redox history away from heterogeneous and highly localized ‘oasis’-style oxygenation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geochemistry of the EBA-2 drill core from South Africa.
Fig. 2: Geochemical comparison of Palaeoproterozoic shales targeted in this study versus older Archaean shales that evidence an early whiff of O2.
Fig. 3: Conceptual schematic of hypothesized changes to the dissolved seawater Mn(II) reservoir and seafloor Mn oxide burial as a result of oscillatory oxygenation during the GOE.

Similar content being viewed by others

Data availability

All data reported in the present study are available through Mendeley Data at: https://doi.org/10.17632/89gjpt9zxv.1.

References

  1. Philippot, P. et al. Globally asynchronous sulphur isotope singals require re-definition of the Great Oxidation Event. Nat. Commun. 9, 2245 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  2. Warke, M. R. et al. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”. Proc. Natl Acad. Sci. USA 117, 13314–13320 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 3017–3315 (2014).

    Article  Google Scholar 

  5. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Luo, G. et al. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. Izon, G. et al. Bulk and grain-scale minor sulfur isotope data reveal complexities in the dynamics of Earth’s oxygenation. Proc. Natl Acad. Sci. USA 119, e2025606119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uveges, B. T., Izon, G., Ono, S., Beukes, N. J. & Summons, R. E. Reconciling discrepant minor sulfur isotope records of the Great Oxidation Event. Nat. Commun. 14, 279 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Gumsley, A. P. et al. Timing and tempo of the Great Oxidation Event. Proc. Natl Acad. Sci. USA 114, 1811–1816 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    Article  CAS  ADS  Google Scholar 

  14. Ostrander, C. M., Johnson, A. C. & Anbar, A. D. Earth’s first redox revolution. Annu. Rev. Earth Planet. Sci. 49, 337–366 (2021).

    Article  CAS  ADS  Google Scholar 

  15. Reinhard, C. T. & Planavsky, N. J. The history of ocean oxygenation. Ann. Rev. Mar. Sci. 14, 331–353 (2022).

    Article  PubMed  Google Scholar 

  16. Calvert, S. E. & Pedersen, T. F. Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales. Econ. Geol. 91, 36–47 (1996).

    Article  CAS  Google Scholar 

  17. Rehkämper, M. et al. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 197, 65–81 (2002).

    Article  ADS  Google Scholar 

  18. Phillips, R. F. et al. The role of manganese oxide mineralogy in thallium isotopic fractionation upon sorption. Geochim. Cosmochim. Acta 356, 83–92 (2023).

    Article  CAS  ADS  Google Scholar 

  19. Nielsen, S. G., Rehkämper, M. & Prytulak, J. Investigation and application of thallium isotope fractionation. Rev. Mineral. Geochem. 82, 759–798 (2017).

    Article  CAS  Google Scholar 

  20. Owens, J. D., Nielsen, S. G., Horner, T. J., Ostrander, C. M. & Peterson, L. C. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial. Geochim. Cosmochim. Acta 213, 291–307 (2017).

    Article  CAS  ADS  Google Scholar 

  21. Wang, Y., Lu, W., Costa, K. M. & Nielsen, S. G. Beyond anoxia: exploring sedimentary thallium isotopes in paleo-redox reconstructions from a new core top collection. Geochim. Cosmochim. Acta 333, 347–361 (2022).

    Article  CAS  ADS  Google Scholar 

  22. Ostrander, C. M. et al. Thallium isotope cycling between waters, particles, and sediments across a redox gradient. Geochim. Cosmochim. Acta 348, 397–409 (2023).

    Article  CAS  ADS  Google Scholar 

  23. Nielsen, S. G. et al. Thallium isotopes in early diagenetic pyrite – a paleoredox proxy? Geochim. Cosmochim. Acta 75, 6690–6704 (2011).

    Article  CAS  ADS  Google Scholar 

  24. Dunk, R. M., Mills, R. A. & Jenkins, W. J. A reevaluation of the oceanic uranium budget for the Holocene. Chem. Geol. 190, 45–67 (2002).

    Article  CAS  ADS  Google Scholar 

  25. Miller, C. A., Peucker-Ehrenbrink, B., Walker, B. D. & Marcantonio, F. Re-assessing the surface cycling of molybdenum and rhenium. Geochim. Cosmochim. Acta 75, 7146–7179 (2011).

    Article  CAS  ADS  Google Scholar 

  26. Ku, T.-L., Mathieu, G. G. & Knauss, K. G. Uranium in open ocean: concentration and isotopic composition. Deep-Sea Res. 24, 1005–1017 (1977).

    CAS  Google Scholar 

  27. Erickson, B. E. & Helz, G. R. Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochim. Cosmochim. Acta 64, 1149–1158 (2000).

    Article  CAS  ADS  Google Scholar 

  28. Hetzel, A., Böttcher, M. E., Wortmann, U. G. & Brumsack, H.-J. Paleo-redox conditions during OAE-2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeogr. Palaeoclimatol. Palaeoecol. 273, 302–328 (2009).

    Article  Google Scholar 

  29. Hannah, J. L., Bekker, A., Stein, H. J., Markey, R. J. & Holland, H. D. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 225, 43–52 (2004).

    Article  CAS  ADS  Google Scholar 

  30. Rasmussen, B., Bekker, A. & Fletcher, I. R. Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet. Sci. Lett. 382, 173–180 (2013).

    Article  CAS  ADS  Google Scholar 

  31. Zerkle, A. L. et al. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465–467 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Raiswell, R. et al. The iron paleoredox proxies: a guide to the pitfalls, problems and proper practice. Am. J. Sci. 318, 491–526 (2018).

    Article  CAS  ADS  Google Scholar 

  33. Rudnick, R. L. & Gao, S. in The Crust, Vol. 3 (ed. Rudnick, R. L.) 1–64 (Elsevier, 2003).

  34. Ostrander, C. M. et al. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat. Geosci. 12, 186–191 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, 1978).

  36. Kirschvink, J. L. et al. Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc. Natl Acad. Sci. USA 97, 1400–1405 (2000).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Johnson, J. E. et al. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl Acad. Sci. USA 110, 11238–11243 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Daye, M. et al. Light-driven anaerobic microbial oxidation of manganese. Nature 576, 311–314 (2019).

    Article  PubMed  Google Scholar 

  39. Liu, W. et al. Anoxic photogeochemical oxidation of manganese carbonate yields manganese oxide. Proc. Natl Acad. Sci. USA 117, 22698–22704 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Anbar, A. D. et al. A whiff of oxygen before the great oxidation event? Science 317, 1903–1906 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Kendall, B., Brennecka, G. A., Weyer, S. & Anbar, A. D. Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chem. Geol. 362, 105–114 (2013).

    Article  CAS  ADS  Google Scholar 

  44. Sverjensky, D. A. & Lee, N. The great oxidation event and mineral diversification. Elements 6, 31–36 (2010).

    Article  CAS  ADS  Google Scholar 

  45. Catling, D. in Treatise on Geochemistry 2nd edn. (eds Holland, H. D. & Turekian, K. K.) 177–195 (Elsevier, 2014).

  46. Wogan, N. F., Catling, D. C., Zahnle, K. & Claire, M. W. Rapid timescale for an oxic transition during the Great Oxidation Event and the instability of low atmospheric O2. Proc. Natl Acad. Sci. USA 119, e2205618119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nielsen, S. G. et al. Thallium isotope composition of the upper continental crust and rivers—An investigation of the continental sources of dissolved marine thallium. Geochim. Cosmochim. Acta 69, 2007–2019 (2005).

    Article  CAS  ADS  Google Scholar 

  48. Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Coetzee, L. L. Genetic stratigraphy of the Paleoproterozoic Pretoria Group in the Western Transvaal. MSc thesis, Rand Afrikaans Univ. (2001).

  50. Coetzee, L. L., Beukes, N. J., Gutzmer, J. & Kakegawa, T. Links of organic carbon cycling and burial to depositional depth and establishment of a snowball Earth at 2.3 Ga. Evidence from the Timeball Hill Formation, Transvaal Supergroup, South Africa. S. Afr. J. Geol. 109, 109–122 (2006).

    Article  CAS  Google Scholar 

  51. Eriksson, K. A. The Timeball Hill Formation—a fossil delta. J. Sediment. Res. 43, 1046–1053 (1973).

    Article  Google Scholar 

  52. Eriksson, P. G. & Reczko, B. F. F. Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa. Sediment. Geol. 120, 319–335 (1998).

    Article  ADS  Google Scholar 

  53. Ostrander, C. M., Owens, J. D. & Nielsen, S. G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma). Sci. Adv. 3, e1701020 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  54. Rehkämper, M. & Halliday, A. N. The precise measurement of Tl isotopic compositions by MC-ICPMS: Application to the analysis of geological materials and meteorites. Geochim. Cosmochim. Acta 63, 935–944 (1999).

    Article  ADS  Google Scholar 

  55. Nielsen, S. G., Rehkämper, M., Baker, J. & Halliday, A. N. The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS. Chem. Geol. 204, 109–124 (2004).

    Article  CAS  ADS  Google Scholar 

  56. Shu, Y. et al. Tracing subducted sediment inputs to the Ryukyu Arc—Okinawa Trough system: Evidence from thallium isotopes. Geochim. Cosmochim. Acta 217, 462–491 (2017).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by NASA Exobiology grant 80NSSC22K1628 (to C.M.O., A.W.H., S.G.N.), the WHOI Postdoctoral Scholarship programme (C.M.O., A.W.H.) and a Petroleum Foundation of the American Chemical Society grant 624840ND2 (to A.B.).

Author information

Authors and Affiliations

Authors

Contributions

C.M.O. and S.G.N. conceptualized the study, in collaboration with A.W.H. and A.B. A.B. and S.W.P. collected and provided the samples. C.M.O., A.W.H., Y.S. and K.P.O. prepared the samples for geochemical analysis. C.M.O. and Y.S. performed the isotopic analysis. C.M.O. drafted the initial manuscript. A.W.H., A.B., S.W.P. and S.G.N. helped C.M.O. revise the manuscript before submission and during revision.

Corresponding author

Correspondence to Chadlin M. Ostrander.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Tais Dahl, Lee Kump and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrander, C.M., Heard, A.W., Shu, Y. et al. Onset of coupled atmosphere–ocean oxygenation 2.3 billion years ago. Nature 631, 335–339 (2024). https://doi.org/10.1038/s41586-024-07551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07551-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing