Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Sophisticated natural products as antibiotics

Abstract

In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of ‘undruggable’ targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by β-lactams that bind covalently to inhibit transpeptidases and β-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed β-strands of darobactins that target the undruggable β-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: β-Lactams are molecular mimics of the d-Ala–d-Ala terminal peptidoglycan motif.
Fig. 2: Resistance-evasive compounds.
Fig. 3: ADEP as an anti-persister compound.
Fig. 4: Darobactin and dynobactin.

Similar content being viewed by others

References

  1. Lewis, K. The science of antibiotic discovery. Cell 181, 29–45 (2020).

    CAS  PubMed  Google Scholar 

  2. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    PubMed  Google Scholar 

  3. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Google Scholar 

  4. Ramos-Castaneda, J. A. et al. Mortality due to KPC carbapenemase-producing Klebsiella pneumoniae infections: systematic review and meta-analysis: mortality due to KPC Klebsiella pneumoniae infections. J. Infect. 76, 438–448 (2018).

    PubMed  Google Scholar 

  5. Xu, L., Sun, X. & Ma, X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann. Clin. Microbiol. Antimicrob. 16, 18 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Zgurskaya, H. I., Rybenkov, V. V., Krishnamoorthy, G. & Leus, I. V. Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier. Res. Microbiol. 169, 351–356 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).

    CAS  PubMed  Google Scholar 

  8. D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Fenn, K. et al. Quinones are growth factors for the human gut microbiota. Microbiome 5, 161 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).

    CAS  PubMed  Google Scholar 

  11. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015). This paper describes the discovery of teixobactin from an uncultured bacterium.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shukla, R. et al. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 186, 4059–4073.e4027 (2023).

    CAS  PubMed  Google Scholar 

  13. Pantel, L. et al. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol. Cell 70, 83–94 e87 (2018).

    CAS  PubMed  Google Scholar 

  14. Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imai, Y. et al. Evybactin is a DNA gyrase inhibitor that selectively kills Mycobacterium tuberculosis. Nat. Chem. Biol. 18, 1236–1244 (2022). This paper describes the discovery of darobactins that target BamA in the outer membrane of Gram-negative bacteria.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller, R. D. et al. Computational identification of a systemic antibiotic for gram-negative bacteria. Nat. Microbiol. 7, 1661–1672 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shahsavari, N. et al. A silent operon of Photorhabdus luminescens encodes a prodrug mimic of GTP. mBio 13, e0070022 (2022).

    PubMed  Google Scholar 

  18. Libis, V. et al. Multiplexed mobilization and expression of biosynthetic gene clusters. Nat. Commun. 13, 5256 (2022). This paper describes an approach for efficient cloning of environmental DNA for the expression of BGCs.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022). This study catalogues BGCs from sequenced genomes and links them to taxonomy and biogeography.

    CAS  PubMed  Google Scholar 

  20. O’Shea, R. & Moser, H. E. Physicochemical properties of antibacterial compounds: Implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008).

    PubMed  Google Scholar 

  21. Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017). This study provides rules for compound penetration into Gram-negative bacteria.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mehla, J. et al. Predictive rules of efflux inhibition and avoidance in Pseudomonas aeruginosa. mBio 12, e02785–20 (2021). This study analyses physico-chemical properties of compounds that enable penetration into P. aeruginosa, and synthesis of MDR inhibitors.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, S. et al. Defining new chemical space for drug penetration into Gram-negative bacteria. Nat. Chem. Biol. 16, 1293–1302 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mansbach, R. A. et al. Machine learning algorithm identifies an antibiotic vocabulary for permeating Gram-negative bacteria. J. Chem. Inf. Model. 60, 2838–2847 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Geddes, E. J. et al. Porin-independent accumulation in Pseudomonas enables antibiotic discovery. Nature 624, 145–153 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parker, E. N. et al. Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens. Nat. Microbiol. 5, 67–75 (2020).

    CAS  PubMed  Google Scholar 

  27. Durand-Reville, T. F. et al. Rational design of a new antibiotic class for drug-resistant infections. Nature 597, 698–702 (2021).

    ADS  CAS  PubMed  Google Scholar 

  28. Srinivas, N. et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327, 1010–1013 (2010).

    ADS  CAS  PubMed  Google Scholar 

  29. Luther, A. et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576, 452–458 (2019).

    ADS  CAS  PubMed  Google Scholar 

  30. Pahil, K. S. et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature 625, 572–577 (2024).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zampaloni, C. et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 625, 566–571 (2024).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10, 226 (1929).

    CAS  PubMed Central  Google Scholar 

  33. Mora-Ochomogo, M. & Lohans, C. T. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med. Chem. 12, 1623–1639 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 6, 41–55 (2007).

    CAS  PubMed  Google Scholar 

  35. Reading, C. & Cole, M. Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11, 852–857 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Levasseur, P. et al. Efficacy of a ceftazidime–avibactam combination in a murine model of septicemia caused by Enterobacteriaceae species producing ampc or extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 58, 6490–6495 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Wunderink, R. G. et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: The TANGO II randomized clinical trial. Infect. Dis. Ther. 7, 439–455 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Lewis, K. & Ausubel, F. M. Prospects for plant-derived antibacterials. Nat. Biotechnol. 24, 1504–1507 (2006).

    CAS  PubMed  Google Scholar 

  39. Stermitz, F. R., Lorenz, P., Tawara, J. N., Zenewicz, L. A. & Lewis, K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl Acad. Sci. USA 97, 1433–1437 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moniruzzaman, M. et al. Analysis of orthogonal efflux and permeation properties of compounds leads to the discovery of new efflux pump inhibitors. ACS Infect. Dis. 8, 2149–2160 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R. & Blaser, M. J. Role of the microbiome in human development. Gut 68, 1108–1114 (2019).

    CAS  PubMed  Google Scholar 

  42. Schnizlein, M. K. & Young, V. B. Capturing the environment of the Clostridioides difficile infection cycle. Nat. Rev. Gastroenterol. Hepatol. 19, 508–520 (2022).

    PubMed  Google Scholar 

  43. Anthony, W. E. et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 39, 110649 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022). This paper describes the introduction of a new type of ‘drug’—an assemblage of clostridial spores for the treatment of C. difficile infection.

    CAS  PubMed  Google Scholar 

  45. Lopetuso, L. R., Scaldaferri, F., Petito, V. & Gasbarrini, A. Commensal clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 5, 23 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Mikusova, K., Slayden, R. A., Besra, G. S. & Brennan, P. J. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother. 39, 2484–2489 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chahine, E. B., Karaoui, L. R. & Mansour, H. Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Ann. Pharmacother. 48, 107–115 (2014).

    PubMed  Google Scholar 

  48. Diallo, D. et al. Antituberculosis therapy and gut microbiota: review of potential host microbiota directed-therapies. Front. Cell. Infect. Microbiol. 11, 673100 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Quigley, J. et al. Novel antimicrobials from uncultured bacteria acting against Mycobacterium tuberculosis. mBio 11, e01516–e01520 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Motiwala, T., Mthethwa, Q., Achilonu, I. & Khoza, T. ESKAPE pathogens: looking at Clp ATPases as potential drug targets. Antibiotics 11, 1218 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rempel, S. et al. A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Nature 580, 409–412 (2020).

    ADS  CAS  PubMed  Google Scholar 

  52. Leimer, N. et al. A selective antibiotic for Lyme disease. Cell 184, 5405–5418.e5416 (2021). This paper describes the identification of an antibiotic for selective action against B. burgdorferi.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Polikanov, Y. S., Melnikov, S. V., Soll, D. & Steitz, T. A. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat. Struct. Mol. Biol. 22, 342–344 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chatterjee, A. N. & Perkins, H. R. Compounds formed between nucleotides related to the biosynthesis of bacterial cell wall and vancomycin. Biochem. Biophys. Res. Commun. 24, 489–494 (1966).

    CAS  PubMed  Google Scholar 

  55. Munch, D. & Sahl, H. G. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides. Biochim. Biophys. Acta 1848, 3062–3071 (2015).

    PubMed  Google Scholar 

  56. Leclercq, R., Derlot, E., Duval, J. & Courvalin, P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319, 157–161 (1988).

    CAS  PubMed  Google Scholar 

  57. Marshall, C. G., Broadhead, G., Leskiw, B. K. & Wright, G. D. d-Ala–d-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc. Natl Acad. Sci. USA 94, 6480–6483 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shukla, R. et al. Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature 608, 390–396 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shukla, R. et al. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 186, 4059–4073 (2023).

    CAS  PubMed  Google Scholar 

  60. Homma, T. et al. Dual targeting of cell wall precursors by teixobactin leads to cell lysis. Antimicrob. Agents Chemother. 60, 6510–6517 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schatz, A., Bugie, E. & Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55, 66–69 (1944).

    CAS  Google Scholar 

  62. Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).

    CAS  PubMed  Google Scholar 

  63. Aguirre Rivera, J. et al. Real-time measurements of aminoglycoside effects on protein synthesis in live cells. Proc. Natl Acad. Sci. USA 118, e2013315118 (2021).

    PubMed  PubMed Central  Google Scholar 

  64. Andersson, D. I., Bohman, K., Isaksson, L. A. & Kurland, C. G. Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol. Genetics Genomics 187, 467–472 (1982).

    CAS  Google Scholar 

  65. Wohlgemuth, I. et al. Translation error clusters induced by aminoglycoside antibiotics. Nat. Commun. 12, 1830 (2021). This study reveals the basis of killing by aminoglycosides—the introduction of strings of errors into nascent proteins.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    CAS  PubMed  Google Scholar 

  67. Kling, A. et al. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348, 1106–1112 (2015).

    ADS  CAS  PubMed  Google Scholar 

  68. Lewis, K. (ed.) Persister Cells and Infectious Disease (Springer Nature, 2019).

  69. Dorr, T., Vulic, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317 (2010).

    PubMed  PubMed Central  Google Scholar 

  70. Berghoff, B. A., Hoekzema, M., Aulbach, L. & Wagner, E. G. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation. Mol. Microbiol. 103, 1020–1033 (2017).

    CAS  PubMed  Google Scholar 

  71. Romilly, C., Deindl, S. & Wagner, E. G. H. The ribosomal protein S1-dependent standby site in tisB mRNA consists of a single-stranded region and a 5′ structure element. Proc. Natl Acad. Sci. USA 116, 15901–15906 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schumacher, M. A. et al. HipBA–promoter structures reveal the basis of heritable multidrug tolerance. Nature 524, 59–64 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Manuse, S. et al. Bacterial persisters are a stochastically formed subpopulation of low-energy cells. PLoS Biol. 19, e3001194 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Quigley, J. & Lewis, K. Noise in a metabolic pathway leads to persister formation in Mycobacterium tuberculosis. Microbiol. Spectr. 10, e0294822 (2022).

    PubMed  Google Scholar 

  75. Fleck, L. E. et al. A screen for and validation of prodrug antimicrobials. Antimicrob. Agents Chemother. 58, 1410–1419 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Goodreid, J. D. et al. Total synthesis and antibacterial testing of the A54556 cyclic acyldepsipeptides isolated from Streptomyces hawaiiensis. J. Nat. Prod. 77, 2170–2181 (2014).

    CAS  PubMed  Google Scholar 

  77. Thomy, D. et al. The ADEP biosynthetic gene cluster in Streptomyces hawaiiensis NRRL 15010 reveals an accessory clpP gene as a novel antibiotic resistance factor. Appl. Environ. Microbiol. 85, e01292–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Brotz-Oesterhelt, H. et al. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat. Med. 11, 1082–1087 (2005). This paper describes the discovery of the mechanism of killing by ADEP: dysregulation of the bacterial protease ClpP.

    PubMed  Google Scholar 

  79. Olivares, A. O., Nager, A. R., Iosefson, O., Sauer, R. T. & Baker, T. A. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Nat. Struct. Mol. Biol. 21, 871–875 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vahidi, S. et al. Reversible inhibition of the ClpP protease via an N-terminal conformational switch. Proc. Natl Acad. Sci. USA 115, E6447–E6456 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Griffith, E. C. et al. Ureadepsipeptides as ClpP Activators. ACS Infect. Dis. 5, 1915–1925 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Malik, I. T. et al. Functional characterisation of ClpP mutations conferring resistance to acyldepsipeptide antibiotics in firmicutes. ChemBioChem 21, 1997–2012 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gatsogiannis, C., Balogh, D., Merino, F., Sieber, S. A. & Raunser, S. Cryo-EM structure of the ClpXP protein degradation machinery. Nat. Struct. Mol. Biol. 26, 946–954 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ripstein, Z. A., Vahidi, S., Houry, W. A., Rubinstein, J. L. & Kay, L. E. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. eLife 9, e52158 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fei, X. et al. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. eLife 9, e52774 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sass, P. et al. Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc. Natl Acad. Sci. USA 108, 17474–17479 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Silber, N., Mayer, C., Matos de Opitz, C. L. & Sass, P. Progression of the late-stage divisome is unaffected by the depletion of the cytoplasmic FtsZ pool. Commun. Biol. 4, 270 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Conlon, B. P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365–370 (2013). This paper describes the anti-persister activity of ADEP.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mroue, N. et al. Pharmacodynamics of ClpP-activating antibiotic combinations against Gram-positive pathogens. Antimicrob. Agents Chemother. 64, e01554-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Brown Gandt, A. et al. In vivo and in vitro effects of a ClpP-activating antibiotic against vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 62, e00424-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Brotz-Oesterhelt, H. & Vorbach, A. Reprogramming of the caseinolytic protease by ADEP antibiotics: molecular mechanism, cellular consequences, therapeutic potential. Front. Mol. Biosci. 8, 690902 (2021).

    PubMed  PubMed Central  Google Scholar 

  92. Frees, D., Gerth, U. & Ingmer, H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int. J. Med. Microbiol. 304, 142–149 (2014).

    CAS  PubMed  Google Scholar 

  93. Illigmann, A., Thoma, Y., Pan, S., Reinhardt, L. & Brotz-Oesterhelt, H. Contribution of the Clp protease to bacterial survival and mitochondrial homoeostasis. Microb. Physiol. 31, 260–279 (2021).

    CAS  PubMed  Google Scholar 

  94. Schuster, M. et al. Peptidomimetic antibiotics disrupt the lipopolysaccharide transport bridge of drug-resistant Enterobacteriaceae. Sci. Adv. 9, eadg3683 (2023).

  95. Nguyen, H. et al. Characterization of a radical SAM oxygenase for the ether crosslinking in darobactin biosynthesis. J. Am. Chem. Soc. 144, 18876–18886 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).

    ADS  CAS  PubMed  Google Scholar 

  97. Groß, S. et al. Improved broad-spectrum antibiotics against Gram-negative pathogens via darobactin biosynthetic pathway engineering. Chem. Sci. 12, 11882–11893 (2021).

    PubMed  PubMed Central  Google Scholar 

  98. Seyfert, C. E. et al. Darobactins exhibiting superior antibiotic activity by Cryo-EM structure guided biosynthetic engineering. Angew. Chem. Int. Ed. Engl. 62, e202214094 (2022).

    PubMed  PubMed Central  Google Scholar 

  99. Lin, Y. C. et al. Atroposelective total synthesis of darobactin A. J. Am. Chem. Soc. 144, 14458–14462 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nesic, M. et al. Total synthesis of darobactin A. J. Am. Chem. Soc. 144, 14026–14030 (2022).

    CAS  PubMed  Google Scholar 

  101. Tan, Y. S., Lane, D. P. & Verma, C. S. Stapled peptide design: principles and roles of computation. Drug Discov. Today 21, 1642–1653 (2016).

    CAS  PubMed  Google Scholar 

  102. Maeda, K., Osato, T. & Umezawa, H. A new antibiotic, azomycin. J. Antibiot. 6, 182 (1953).

    CAS  Google Scholar 

  103. Nakamura, S. Structure of azomycin, a new antibiotic. Pharm. Bull. 3, 379–383 (1955).

    CAS  PubMed  Google Scholar 

  104. Shoji, J. H. et al. Isolation of azomycin from Pseudomonas fluorescens. J. Antibiot. 42, 1513–1514 (1989).

    CAS  Google Scholar 

  105. Gupta, R. et al. Functionalized nitroimidazole scaffold construction and their pharmaceutical applications: a 1950–2021 comprehensive overview. Pharmaceuticals 15, 561 (2022).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  106. Goldstein, B. P. et al. The mechanism of action of nitro-heterocyclic antimicrobial drugs. Metabolic activation by micro-organisms. J. Gen. Microbiol. 100, 283–298 (1977).

    CAS  PubMed  Google Scholar 

  107. Miller, M. J. & Liu, R. Design and syntheses of new antibiotics inspired by nature’s quest for iron in an oxidative climate. Acc. Chem. Res. 54, 1646–1661 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sato, T. & Yamawaki, K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin. Infect. Dis. 69, S538–S543 (2019). This paper describes the creation of an approved chimeric antibiotic utilizing a siderophore moiety for penetration into the cell.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Broder, S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res. 85, 1–18 (2010).

    CAS  PubMed  Google Scholar 

  110. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee, J. Y., Tsolis, R. M. & Baumler, A. J. The microbiome and gut homeostasis. Science 377, eabp9960 (2022).

    CAS  PubMed  Google Scholar 

  114. Cook, M. A. & Wright, G. D. The past, present, and future of antibiotics. Sci. Transl. Med. 14, eabo7793 (2022).

    CAS  PubMed  Google Scholar 

  115. Smith, P. A. et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 561, 189–194 (2018).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.L. is supported by US National Institutes of Health grants (RO1 AI170962 and R01 AI158388), The Schmidt Foundation and The Steven and Alexandra Cohen Foundation. R.E.L. is supported by US National Institutes of Health grants (AI141193, AI090810 and AI157312) and ALSAC, St Jude’s Children Research Hospital. H.B.O. is grateful for funding by the Deutsche Forschungsgemeinschaft (German Research Foundation) TRR261 (project ID 398967434) and CoE CMFI (390838134). This project was supported by the Swiss National Science Foundation via the NCCR AntiResist (grant number 180541) to S.H. T.S. is supported by the German Center for Infection Research (DZIF), the Deutsche Forschungsgemeinschaft (German Research Foundation) TRR261 (project ID 398967434) and GRK2873 (project ID 494832089). We acknowledge funding by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101045485 to M.W.). This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) grants SFB1565 (project ID 469281184) to M.V.R. and I.W., by the Leibniz Prize to M.V.R. and by the Max Planck Society. The authors thank L. Wilt, S. Anderson and R. Tangallapally for their assistance in preparing this review.

Author information

Authors and Affiliations

Authors

Contributions

K.L., R.E.L., H.B.O., S.H., M.V.R., T.S., M.W. and I.W. conceived and wrote this review.

Corresponding authors

Correspondence to Kim Lewis or Richard E. Lee.

Ethics declarations

Competing interests

K.L. is a consultant for NovoBiotic, Arietis, Odyssey Therapeutics, Holobiome, Donum and Flightpath. R.E.L. is an advisor for Prokaryotics and is a co-inventor of relevant intellectual property licensed by Arietis and Microbiotix. H.B.O. S.H., M.V.R., T.S., M.W. and I.W. declare no competing interests

Peer review

Peer review information

Nature thanks Ian Seiple, Gerard Wright and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

An alphabetical listing of all discussed antibiotics and their corresponding chemical structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, K., Lee, R.E., Brötz-Oesterhelt, H. et al. Sophisticated natural products as antibiotics. Nature 632, 39–49 (2024). https://doi.org/10.1038/s41586-024-07530-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07530-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing