Abstract
Language is a defining characteristic of our species, but the function, or functions, that it serves has been debated for centuries. Here we bring recent evidence from neuroscience and allied disciplines to argue that in modern humans, language is a tool for communication, contrary to a prominent view that we use language for thinking. We begin by introducing the brain network that supports linguistic ability in humans. We then review evidence for a double dissociation between language and thought, and discuss several properties of language that suggest that it is optimized for communication. We conclude that although the emergence of language has unquestionably transformed human culture, language does not appear to be a prerequisite for complex thought, including symbolic thought. Instead, language is a powerful tool for the transmission of cultural knowledge; it plausibly co-evolved with our thinking and reasoning capacities, and only reflects, rather than gives rise to, the signature sophistication of human cognition.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Barham, L. & Everett, D. Semiotics and the origin of language in the Lower Palaeolithic. J. Archaeol. Method Theory 28, 535–579 (2021).
Hockett, C. F. The origin of speech. Sci. Am. 203, 88–97 (1960). A classic overview of the relationship between key features of human language and communication systems found in other species, with a focus on distinctive and shared properties.
Jackendoff, R. & Pinker, S. The faculty of language: what’s special about it? Cognition 95, 201–236 (2005).
Hurford, J. R. Language in the Light of Evolution: Volume 1, The Origins of Meaning (Oxford Univ. Press, 2007).
Kirby, S., Cornish, H. & Smith, K. Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language. Proc. Natl Acad. Sci. USA 105, 10681–10686 (2008). This behavioural investigation introduces an experimental paradigm based on iterated learning of artificial languages for studying the cultural evolution of language; the findings suggest that languages evolve to maximize their transmissibility by becoming easier to learn and more structured.
Seyfarth, R. M. & Cheney, D. L. The Social Origins of Language (Princeton Univ. Press, 2018).
Gibson, E. et al. How efficiency shapes human language. Trends Cogn. Sci. 23, 389–407 (2019).
Chomsky, N. The Minimalist Program (MIT Press, 1995).
Carruthers, P. The cognitive functions of language. Behav. Brain Sci. 25, 657–674 (2002). This comprehensive review discusses diverse language-for-thought views and puts forward a specific proposal whereby language has a critical role in cross-domain integration.
Gentner, D. & Goldin-Meadow, S. Language in Mind: Advances in the Study of Language and Thought (MIT Press, 2003).
Majid, A., Bowerman, M., Kita, S., Haun, D. B. & Levinson, S. C. Can language restructure cognition? The case for space. Trends Cogn. Sci. 8, 108–114 (2004).
Vygotsky, L. S. Thought and Language (MIT Press, 2012).
Lupyan, G. The centrality of language in human cognition. Lang. Learn. 66, 516–553 (2016).
Davidson, D. in Mind and Language (ed. Guttenplan, S.) 1975–1977 (Oxford Univ. Press, 1975).
Dummett, M. Origins of Analytical Philosophy (Harvard Univ. Press, 1994).
Gleitman, L. & Papafragou, A. in The Cambridge Handbook of Thinking and Reasoning (eds Holyoak, K. J. & Morrison, R. G.) 633–661 (Cambridge Univ. Press, 2005).
de Villiers, J. in Understanding Other Minds: Perspectives from Developmental Cognitive Neuroscience (eds Baron-Cohen, S. et al.) 83–123 (Oxford Univ. Press, 2000).
Gentner, D. in Language in Mind: Advances in the Study of Language and Thought (eds Gentner, D. & Goldin-Meadow, S.) 3–14 (MIT Press, 2003). This position piece articulates one version of a language-for-thought hypothesis, whereby human intelligence is due to a combination of our analogical reasoning ability, possession of symbolic representations, and the ability of relational language to improve analogical reasoning abilities.
Buller, D. J. Adapting Minds: Evolutionary Psychology and the Persistent Quest for Human Nature (MIT Press, 2005).
Gould, S. J. & Vrba, E. S. Exaptation—a missing term in the science of form. Paleobiology 8, 4–15 (1982).
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). This article introduces a formal framework for systems of information transfer, with core concepts such as channel capacity, and lays a foundation for the field of information theory.
Goldberg, A. E. Constructions: A Construction Grammar Approach to Argument Structure (Univ. Chicago Press, 1995).
Jackendoff, R. Foundations of Language: Brain, Meaning, Grammar, Evolution (Oxford Univ. Press, 2002).
Geschwind, N. The organization of language and the brain: language disorders after brain damage help in elucidating the neural basis of verbal behavior. Science 170, 940–944 (1970).
Friederici, A. D. Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6, 78–84 (2002).
Bates, E. et al. Voxel-based lesion–symptom mapping. Nat. Neurosci. 6, 448–450 (2003).
Hagoort, P. The neurobiology of language beyond single-word processing. Science 366, 55–58 (2019).
Fedorenko, E., Ivanova, A. I. & Regev, T. I. The language network as a natural kind within the broader landscape of the human brain. Nat. Rev. Neurosci. 25, 289–312 (2024).
Neville, H. J. et al. Cerebral organization for language in deaf and hearing subjects: biological constraints and effects of experience. Proc. Natl Acad. Sci. USA 95, 922–929 (1998).
Fedorenko, E., Hsieh, P.-J., Nieto-Castañon, A., Whitfield-Gabrieli, S. & Kanwisher, N. A new method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 104, 1177–1194 (2010).
Vagharchakian, L., Dehaene-Lambertz, G., Pallier, C. & Dehaene, S. A temporal bottleneck in the language comprehension network. J. Neurosci. 32, 9089–9102 (2012).
Regev, M., Honey, C. J., Simony, E. & Hasson, U. Selective and invariant neural responses to spoken and written narratives. J. Neurosci. 33, 15978–15988 (2013).
Hu, J. et al. Precision fMRI reveals that the language-selective network supports both phrase-structure building and lexical access during language production. Cereb. Cortex 33, 4384–4404 (2022).
Menenti, L., Gierhan, S. M. E., Segaert, K. & Hagoort, P. Shared language: overlap and segregation of the neuronal infrastructure for speaking and listening revealed by functional MRI. Psychol. Sci. 22, 1173–1182 (2011). This fMRI investigation establishes that language comprehension and language production draw on the same brain areas in the left frontal and temporal cortex.
Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).
Pallier, C., Devauchelle, A. D. & Dehaene, S. Cortical representation of the constituent structure of sentences. Proc. Natl Acad. Sci. USA 108, 2522–2527 (2011).
Bozic, M., Fonteneau, E., Su, L. & Marslen‐Wilson, W. D. Grammatical analysis as a distributed neurobiological function. Hum. Brain Mapp. 36, 1190–1201 (2015).
Rodd, J. M., Vitello, S., Woollams, A. M. & Adank, P. Localising semantic and syntactic processing in spoken and written language comprehension: an activation likelihood estimation meta-analysis. Brain Lang. 141, 89–102 (2015).
Blank, I., Balewski, Z., Mahowald, K. & Fedorenko, E. Syntactic processing is distributed across the language system. NeuroImage 127, 307–323 (2016).
Fedorenko, E. et al. Neural correlate of the construction of sentence meaning. Proc. Natl Acad. Sci. USA 113, E6256–E6262 (2016).
Nelson, M. J. et al. Neurophysiological dynamics of phrase-structure building during sentence processing. Proc. Natl Acad. Sci. USA 114, E3669–E3678 (2017).
Fedorenko, E., Blank, I. A., Siegelman, M. & Mineroff, Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 203, 104348 (2020). This fMRI investigation establishes that every part of the language network that is sensitive to syntactic structure building is also sensitive to word meanings and comprehensively reviews literature relevant to the syntax selectivity debate.
Giglio, L., Ostarek, M. O., Weber, K. & Hagoort, P. Commonalities and asymmetries in the neurobiological infrastructure for language production and comprehension. Cereb. Cortex 32, 1405–1418 (2022).
Heilbron, M., Armeni, K., Schoffelen, J. M., Hagoort, P. & De Lange, F. P. A hierarchy of linguistic predictions during natural language comprehension. Proc. Natl Acad. Sci. USA 119, e2201968119 (2022).
Shain, C., Blank, I. A., Fedorenko, E., Gibson, E. & Schuler, W. Robust effects of working memory demand during naturalistic language comprehension in language-selective cortex. J. Neurosci. 42, 7412–7430 (2022).
Desbordes, T. et al. Dimensionality and ramping: signatures of sentence integration in the dynamics of brains and deep language models. J. Neurosci. 43, 5350–5364 (2023).
Shain, C. et al. Distributed sensitivity to syntax and semantics throughout the language network. J. Cogn. Neurosci. 22, 1–43 (2024). This fMRI investigation establishes distributed sensitivity to cognitive demands associated with lexical access, syntactic structure building and semantic composition across the language network.
Tuckute, G. et al. Driving and suppressing the human language network using large language models. Nat. Hum. Behav. 8, 544–561 (2024).
Gentner, D. Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7, 155–170 (1983).
Duncan, J. How Intelligence Happens (Yale Univ. Press, 2012).
Varley, R. A., Klessinger, N. J., Romanowski, C. A. & Siegal, M. Agrammatic but numerate. Proc. Natl Acad. Sci. USA 102, 3519–3524 (2005). Patients with acquired damage to the language network display aphasia and linguistic deficits (including severe grammatical difficulties) but perform at the level of neurotypical control participants on diverse numerical reasoning tasks.
Klessinger, N., Szczerbinski, M. & Varley, R. Algebra in a man with severe aphasia. Neuropsychologia 45, 1642–1648 (2007).
Lecours, A. & Joanette, Y. Linguistic and other psychological aspects of paroxysmal aphasia. Brain and Language 10, 1–23 (1980).
Kertesz, A. in Thought Without Language (ed. Weiskrantz, L.) 451–463 (Oxford Univ. Press, 1988).
Varley, R. & Siegal, M. Evidence for cognition without grammar from causal reasoning and ‘theory of mind’ in an agrammatic aphasic patient. Curr. Biol. 10, 723–726 (2000).
Siegal, M., Varley, R. & Want, S. C. Mind over grammar: reasoning in aphasia and development. Trends Cogn. Sci. 5, 296–301 (2001).
Varley, R. In Cognitive Bases of Science (eds Carruthers, P. et al.) 99–116 (Cambridge Univ. Press, 2002).
Woolgar, A., Duncan, J., Manes, F. & Fedorenko, E. Fluid intelligence is supported by the multiple-demand system not the language system. Nat. Hum. Behav. 2, 200–204 (2018).
Dronkers, N. F., Ludy, C. A. & Redfern, B. B. Pragmatics in the absence of verbal language: descriptions of a severe aphasic and a language-deprived adult. J. Neurolinguistics 11, 179–190 (1998).
Varley, R., Siegal, M. & Want, S. C. Severe impairment in grammar does not preclude theory of mind. Neurocase 7, 489–493 (2001).
Apperly, I. A., Samson, D., Carroll, N., Hussain, S. & Humphreys, G. Intact first-and second-order false belief reasoning in a patient with severely impaired grammar. Soc. Neurosci. 1, 334–348 (2006). A person with acquired damage to the language network and consequent aphasia exhibits linguistic deficits but performs at the level of neurotypical control participants on theory of mind tasks.
Willems, R. M., Benn, Y., Hagoort, P., Toni, I. & Varley, R. Communicating without a functioning language system: Implications for the role of language in mentalizing. Neuropsychologia 49, 3130–3135 (2011).
Bek, J., Blades, M., Siegal, M. & Varley, R. Language and spatial reorientation: evidence from severe aphasia. J. Exp. Psychol. 36, 646 (2010).
Caramazza, A., Berndt, R. S. & Brownell, H. H. The semantic deficit hypothesis: Perceptual parsing and object classification by aphasic patients. B. Lang. 15, 161–189 (1982).
Chertkow, H., Bub, D., Deaudon, C. & Whitehead, V. On the status of object concepts in aphasia. Brain Lang. 58, 203–232 (1997).
Saygın, A. P., Wilson, S. M., Dronkers, N. F. & Bates, E. Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia 42, 1788–1804 (2004).
Jefferies, E. & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 129, 2132–2147 (2006).
Dickey, M. W. & Warren, T. The influence of event-related knowledge on verb-argument processing in aphasia. Neuropsychologia 67, 63–81 (2015).
Ivanova, A. A. et al. The language network is recruited but not required for nonverbal event semantics. Neurobiol. Lang. 2, 176–201 (2021). In this fMRI study, semantic processing of event pictures in neurotypical individuals engages the language network, but less than verbal descriptions of the same events; however, individuals with acquired damage to the language network and consequent aphasia perform at the level of neurotypical control participants on a non-verbal semantic task.
Benn, Y. et al. The language network is not engaged in object categorization. Cereb. Cortex 33, 10380–10400 (2023).
Varley, R. Reason without much language. Lang. Sci. 46, 232–244 (2014).
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R. & Tsivkin, S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284, 970–974 (1999).
Hermer, L. & Spelke, E. Modularity and development: the case of spatial reorientation. Cognition 61, 195–232 (1996).
Lupyan, G. Extracommunicative functions of language: verbal interference causes selective categorization impairments. Psychon. Bull. Rev. 16, 711–718 (2009).
Braga, R. M., DiNicola, L. M., Becker, H. C. & Buckner, R. L. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. J. Neurophysiol. 124, 1415–1448 (2020). This fMRI investigation of the language network establishes this network as one of the intrinsic large-scale networks in the human brain, distinct from nearby cognitive networks.
Fedorenko, E. & Blank, I. A. Broca’s area is not a natural kind. Trends Cogn. Sci. 24, 270–284 (2020).
Fedorenko, E., Behr, M. K. & Kanwisher, N. Functional specificity for high-level linguistic processing in the human brain. Proc. Natl Acad. Sci. USA 108, 16428–16433 (2011). This fMRI investigation finds that arithmetic addition, demanding executive function tasks and music processing do not engage the language areas, thus establishing their selectivity for linguistic input over non-linguistic inputs and tasks.
Monti, M. M., Parsons, L. M. & Osherson, D. N. Thought beyond language: neural dissociation of algebra and natural language. Psychol. Sci. 23, 914–922 (2012).
Amalric, M. & Dehaene, S. A distinct cortical network for mathematical knowledge in the human brain. NeuroImage 189, 19–31 (2019).
Monti, M. M., Osherson, D. N., Martinez, M. J. & Parsons, L. M. Functional neuroanatomy of deductive inference: a language-independent distributed network. NeuroImage 37, 1005–1016 (2007).
Monti, M. M., Parsons, L. M. & Osherson, D. N. The boundaries of language and thought in deductive inference. Proc. Natl Acad. Sci. USA 106, 12554–12559 (2009). This fMRI investigation finds largely non-overlapping activations of brain regions to language processing and logical processing, thus establishing the selectivity of language areas for linguistic input over logic statements.
Ivanova, A. A. et al. Comprehension of computer code relies primarily on domain-general executive brain regions. eLife 9, e58906 (2020).
Liu, Y. F., Kim, J., Wilson, C. & Bedny, M. Computer code comprehension shares neural resources with formal logical inference in the fronto-parietal network. eLife 9, e59340 (2020).
Paunov, A. M., Blank, I. A. & Fedorenko, E. Functionally distinct language and theory of mind networks are synchronized at rest and during language comprehension. J. Neurophysiol. 121, 1244–1265 (2019).
Paunov, A. M. et al. Differential tracking of linguistic vs. mental state content in naturalistic stimuli by language and theory of mind (ToM) brain networks. Neurobiol. Lang. 3, 413–440 (2022).
Shain, C., Paunov, A., Chen, X., Lipkin, B. & Fedorenko, E. No evidence of theory of mind reasoning in the human language network. Cereb. Cortex 33, 6299–6319 (2023).
Sueoka, Y., Paunov, A., Ivanova, A., Blank, I. A. & Fedorenko, E. The language network reliably “tracks” naturalistic meaningful non-verbal stimuli. Neurobiol. Lang. https://doi.org/10.1162/nol_a_00135 (2024).
Piaget, J. The Language and Thought of the Child (Harcourt Brace, 1926).
Gentner, D. & Loewenstein, J. in Language, Literacy, and Cognitive Development: The Development and Consequences of Symbolic Communication (eds Amsel, E. & Byrnes, J. P.) 89–126 (Lawrence Erlbaum Associates, 2002).
Appleton, M. & Reddy, V. Teaching three year‐olds to pass false belief tests: a conversational approach. Soc. Dev. 5, 275–291 (1996).
Slaughter, V. & Gopnik, A. Conceptual coherence in the child’s theory of mind: training children to understand belief. Child Dev. 67, 2967–2988 (1996).
Hiersche, K. J., Schettini, E., Li, J. & Saygin, Z. M. (2022). Functional dissociation of the language network and other cognition in early childhood. Preprint at bioRxiv https://doi.org/10.1101/2022.08.11.503597 (2023).
Hiersche, K. J. Functional Organization and Modularity of the Superior Temporal Lobe in Children. Masters thesis, The Ohio State University (2023).
Hall, W. C. What you don’t know can hurt you: the risk of language deprivation by impairing sign language development in deaf children. Matern. Child Health J. 21, 961–965 (2017).
Hall, M. L., Hall, W. C. & Caselli, N. K. Deaf children need language, not (just) speech. First Lang. 39, 367–395 (2019).
Bedny, M. & Saxe, R. Insights into the origins of knowledge from the cognitive neuroscience of blindness. Cogn. Neuropsychol. 29, 56–84 (2012).
Grand, G., Blank, I. A., Pereira, F. & Fedorenko, E. Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nat. Hum. Behav. 6, 975–987 (2022).
Jackendoff, R. How language helps us think. Pragmat. Cogn. 4, 1–34 (1996).
Jackendoff. R. The User’s Guide to Meaning (MIT Press, 2012).
Curtiss, S. Genie: A Psycholinguistic Study of a Modern-day Wild Child (Academic Press, 1977).
Peterson, C. C. & Siegal, M. Representing inner worlds: theory of mind in autistic, deaf, and normal hearing children. Psychol. Sci. 10, 126–129 (1999).
Richardson, H. et al. Reduced neural selectivity for mental states in deaf children with delayed exposure to sign language. Nat. Commun. 11, 3246 (2020).
Spelke, E. S. What Babies Know: Core Knowledge and Composition, Vol. 1 (Oxford Univ. Press, 2022).
Cheney, D. L. & Seyfarth, R. M. How Monkeys See the World: Inside the Mind of Another Species (Univ. Chicago Press, 1990).
Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317, 1360–1366 (2007).
Tomasello, M. & Herrmann, E. Ape and human cognition: what’s the difference? Curr. Dir. Psychol. Sci. 19, 3–8 (2010).
Fischer, J. Monkeytalk: Inside the Worlds and Minds of Primates (Univ. Chicago Press, 2017).
Krupenye, C. & Call, J. Theory of mind in animals: current and future directions. Wiley Interdiscip. Rev. Cogn. Sci. 10, e1503 (2019).
Shimizu, T. Why can birds be so smart? Background, significance, and implications of the revised view of the avian brain. Comparat. Cogn. Behav. Rev. 4, 103–115 (2009).
Güntürkün, O. & Bugnyar, T. Cognition without cortex. Trends Cogn. Sci. 20, 291–303 (2016).
Hart, B. L., Hart, L. A. & Pinter-Wollman, N. Large brains and cognition: where do elephants fit in? Neurosci. Biobehav. Rev. 32, 86–98 (2008).
Godfrey-Smith, P. Other Minds: The Octopus and the Evolution of Intelligent Life (William Collins, 2016).
Schnell, A. K., Amodio, P., Boeckle, M. & Clayton, N. S. How intelligent is a cephalopod? Lessons from comparative cognition. Biol. Rev. 96, 162–178 (2021).
Gallistel, C. R. Prelinguistic thought. Lang. Learn. Dev. 7, 253–262 (2011).
Fitch, W. T. Animal cognition and the evolution of human language: why we cannot focus solely on communication. Philos. Trans. R. Soc. B 375, 20190046 (2020).
Yamada, J. E. & Marshall, J. C. Laura: A Case Study for the Modularity of Language (MIT Press, 1990).
Rondal, J. A. Exceptional Language Development in Down Syndrome (Cambridge Univ. Press, 1995).
Bellugi, U., Lichtenberger, L., Jones, W., Lai, Z. & St George, M. The neurocognitive profile of Williams syndrome: a complex pattern of strengths and weaknesses. J. Cogn. Neurosci. 12, 7–29 (2000).
Little, B. et al. Language in schizophrenia and aphasia: the relationship with non-verbal cognition and thought disorder. Cogn. Neuropsychiatry 24, 389–405 (2019).
Mahowald, K. et al. Dissociating language and thought in large language models. Trends Cogn. Sci. 28, 517–540(2024).
Chomsky, N., Belleti, A. & Rizzi, L. in On Nature and Language (eds Belleti, A. & Rizzi, L.) 92–161 (Cambridge Univ. Press, 2002).
Schwartz, J. L., Boë, L. J., Vallée, N. & Abry, C. The dispersion–focalization theory of vowel systems. J. Phonetics 25, 255–286 (1997).
Diehl, R. L. Acoustic and auditory phonetics: the adaptive design of speech sound systems. Philos. Trans. R. Soc. B 363, 965–978 (2008).
Everett, C., Blasi, D. E. & Roberts, S. G. Climate, vocal folds, and tonal languages: Connecting the physiological and geographic dots. Proc. Natl Acad. Sci. USA 112, 1322–1327 (2015).
Blasi, D. E. et al. Human sound systems are shaped by post-Neolithic changes in bite configuration. Science 363, eaav3218 (2019).
Dautriche, I., Mahowald, K., Gibson, E., Christophe, A. & Piantadosi, S. T. Words cluster phonetically beyond phonotactic regularities. Cognition 163, 128–145 (2017).
Piantadosi, S. T., Tily, H. & Gibson, E. Word lengths are optimized for efficient communication. Proc. Natl Acad. Sci. USA 108, 3526–3529 (2011).
Levelt, W. J. Speaking: From Intention to Articulation (MIT Press, 1993).
Kemp, C. & Regier, T. Kinship categories across languages reflect general communicative principles. Science 336, 1049–1054 (2012). This study provides a computational demonstration that the kinship systems across world’s languages trade off between simplicity and informativeness in a near-optimal way, and argue that these principles also characterize other category systems.
Gibson, E. et al. Color naming across languages reflects color use. Proc. Natl Acad. Sci. USA 114, 10785–10790 (2017).
Zaslavsky, N., Kemp, C., Regier, T. & Tishby, N. Efficient compression in color naming and its evolution. Proc. Natl Acad. Sci. USA 115, 7937–7942 (2018).
Kemp, C., Gaby, A. & Regier, T. Season naming and the local environment. Proc. 41st Annual Meeting of the Cognitive Science Society 539–545 (2019).
Xu, Y., Liu, E. & Regier, T. Numeral systems across languages support efficient communication: From approximate numerosity to recursion. Open Mind 4, 57–70 (2020).
Denić, M., Steinert-Threlkeld, S. & Szymanik, J. Complexity/informativeness trade-off in the domain of indefinite pronouns. Semant. Linguist. Theor. 30, 166–184 (2021).
Mollica, F. et al. The forms and meanings of grammatical markers support efficient communication. Proc. Natl Acad. Sci. USA 118, e2025993118 (2021).
van de Pol, I., Lodder, P., van Maanen, L., Steinert-Threlkeld, S. & Szymanik, J. Quantifiers satisfying semantic universals have shorter minimal description length. Cognition 232, 105150 (2023).
Clark, H. H. in Context in Language Learning and Language Understanding (eds Malmkj’r, K. & Williams, J.) 63–87) (Cambridge Univ. Press, 1998).
Winter, B., Perlman, M. & Majid, A. Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition 179, 213–220 (2018).
von Humboldt, W. Uber die Verschiedenheit des Menschlichen Sprachbaues (1836).
Hurford, J. R. Linguistic Evolution Through Language Acquisition: Formal and Computational Models (ed. Briscoe, E.) 301–344 (Cambridge Univ. Press, 2002).
Smith, K., Brighton, H. & Kirby, S. Complex systems in language evolution: the cultural emergence of compositional structure. Adv. Complex Syst. 6, 537–558 (2003).
Piantadosi, S. T. & Fedorenko, E. Infinitely productive language can arise from chance under communicative pressure. J. Lang. Evol. 2, 141–147 (2017).
Gibson, E. Linguistic complexity: locality of syntactic dependencies. Cognition 68, 1–76 (1998).
Lewis, R. L., Vasishth, S. & Van Dyke, J. A. Computational principles of working memory in sentence comprehension. Trends Cogn. Sci. 10, 447–454 (2006).
Liu, H. Dependency distance as a metric of language comprehension difficulty. J. Cogn. Sci. 9, 151–191 (2008).
Futrell, R., Mahowald, K. & Gibson, E. Large-scale evidence of dependency length minimization in 37 languages. Proc. Natl Acad. Sci. USA 112, 10336–10341 (2015). This investigation of syntactic dependency lengths across 37 diverse languages suggests that dependencies are predominantly local cross-linguistically, presumably because non-local dependencies are cognitively costly in both production and comprehension.
Dryer, M. S. The Greenbergian word order correlations. Language 68, 81–138 (1992).
Hahn, M., Jurafsky, D. & Futrell, R. Universals of word order reflect optimization of grammars for efficient communication. Proc. Natl Acad. Sci. USA 117, 2347–2353 (2020).
Goldin-Meadow, S., Wing, C. S., Özyürek, A. & Mylander, C. The natural order of events: how speakers of different languages represent events nonverbally. Proc. Natl Acad. Sci. USA 105, 9163–9168 (2008).
Senghas, A., Kita, S. & Ozyürek, A. Children creating core properties of language: evidence from an emerging sign language in Nicaragua. Science 305, 1779–1782 (2004).
Sandler, W., Meir, I., Padden, C. & Aronoff, M. The emergence of grammar: systematic structure in a new language. Proc. Natl Acad. Sci. USA 102, 2661–2665 (2005).
Gibson, E. et al. A noisy-channel account of crosslinguistic word-order variation. Psychol. Sci. 24, 1079–1088 (2013).
Levy, R. A noisy-channel model of human sentence comprehension under uncertain input. In Proc. Conference on Empirical Methods in Natural Language Processing 234–243 (2008).
Gibson, E., Bergen, L. & Piantadosi, S. T. Rational integration of noisy evidence and prior semantic expectations in sentence interpretation. Proc. Natl Acad. Sci. USA 110, 8051–8056 (2013). This behavioural investigation demonstrates that language comprehension is robust to noise: in the presence of corrupt linguistic input, listeners and readers rely on a combination of prior expectations about messages that are likely to be communicated and knowledge of how linguistic signals can get corrupted by noise.
Futrell, R., Levy, R. P. & Gibson, E. Dependency locality as an explanatory principle for word order. Language 96, 371–412 (2020).
Hahn, M. & Xu, Y. Crosslinguistic word order variation reflects evolutionary pressures of dependency and information locality. Proc. Natl Acad. Sci. USA 119, e2122604119 (2022).
Hahn, M., Futrell, R., Levy, R. & Gibson, E. A resource-rational model of human processing of recursive linguistic structure. Proc. Natl Acad. Sci. USA 119, e2122602119 (2022).
Piantadosi, S. T., Tily, H. & Gibson, E. The communicative function of ambiguity in language. Cognition 122, 280–291 (2012).
Quijada, J. A grammar of the Ithkuil language—introduction. ithkuil.net https://ithkuil.net/00_intro.html (accessed 27 February 2022).
Srinivasan, M. & Rabagliati, H. The implications of polysemy for theories of word learning. Child Dev. Perspect. 15, 148–153 (2021).
Bizzi, E. Motor control revisited: a novel view. Curr. Trends Neurol. 10, 75–80 (2016).
Darwin, C. On the Origin of Species–A Facsimile of the First Edition (Harvard Univ. Press, 1964).
Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl Acad. Sci. USA 109, 10661–10668 (2012).
White, L. T. The historical roots of our ecologic crisis. Science 155, 1203–1207 (1967).
King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).
Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).
Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013). This review presents the evidence for the disproportionate expansion of the association cortex relative to other brain areas in humans.
Duncan, J., Assem, M. & Shashidhara, S. Integrated intelligence from distributed brain activity. Trends Cogn. Sci. 24, 838–852 (2020).
Saxe, R. & Kanwisher, N. People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind”. NeuroImage 19, 1835–1842 (2003).
Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).
Deen, B. & Freiwald, W. A. Parallel systems for social and spatial reasoning within the cortical apex. Preprint at bioRxiv https://doi.org/10.1101/2021.09.23.461550 (2021).
Mitchell, D. J. et al. A putative multiple-demand system in the macaque brain. J. Neurosci. 36, 8574–8585 (2016).
Cantlon, J. & Piantadosi, S. Uniquely human intelligence arose from expanded information capacity. Nat. Rev. Psychol. 3, 275–293 (2024).
Tomasello, M. The Cultural Origins of Human Cognition (Harvard Univ. Press, 2009).
Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: Why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 10918–10925 (2011).
Henrich, J. The Secret of Our Success: How Culture is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (Princeton Univ. Press, 2016).
Heyes, C. Cognitive Gadgets (Harvard Univ. Press, 2018).
Gumperz, J. J. & Levinson, S. C. (eds). Rethinking Linguistic Relativity (Cambridge Univ. Press, 1996).
Piaget, J. Language and Thought of the Child: Selected Works, Vol. 5 (Routledge, 2005).
Gleitman, L. R. & Papafragou, A. in Cambridge Handbook of Thinking and Reasoning (eds Holyoak, K. & Morrison, R.) 2nd edn (Oxford Univ. Press, 2016).
Fedorenko, E. & Varley, R. Language and thought are not the same thing: evidence from neuroimaging and neurological patients. Ann. NY Acad. Sci. 1369, 132–153 (2016).
Gentner, D. Language as cognitive tool kit: How language supports relational thought. Am. Psychol. 71, 650 (2016).
Frank, M. C., Everett, D. L., Fedorenko, E. & Gibson, E. Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition 108, 819–824 (2008).
Wernicke, C. The aphasic symptom-complex: a psychological study on an anatomical basis. Arch. Neurol. 22, 280–282 (1869).
Lichteim, L. On aphasia. Brain 7, 433–484 (1885).
Poeppel, D., Emmorey, K., Hickok, G. & Pylkkänen, L. Towards a new neurobiology of language. J. Neurosci. 32, 14125–14131 (2012).
Tremblay, P. & Dick, A. S. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 162, 60–71 (2016).
Hillis, A. E. et al. Re‐examining the brain regions crucial for orchestrating speech articulation. Brain 127, 1479–1487 (2004).
Flinker, A. et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Sci. USA 112, 2871–2875 (2015).
Long, M. A. et al. Functional segregation of cortical regions underlying speech timing and articulation. Neuron 89, 1187–1193 (2016).
Guenther, F. H. Neural Control of Speech (MIT Press, 2016).
Basilakos, A., Smith, K. G., Fillmore, P., Fridriksson, J. & Fedorenko, E. Functional characterization of the human speech articulation network. Cereb. Cortex 28, 1816–1830 (2018).
Obleser, J., Zimmermann, J., Van Meter, J. & Rauschecker, J. P. Multiple stages of auditory speech perception reflected in event-related fMRI. Cereb. Cortex 17, 2251–2257 (2007).
Mesgarani, N., Cheung, C., Johnson, K. & Chang, E. F. Phonetic feature encoding in human superior temporal gyrus. Science 343, 1006–1010 (2014).
Norman-Haignere, S., Kanwisher, N. G. & McDermott, J. H. Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron 88, 1281–1296 (2015).
Overath, T., McDermott, J., Zarate, J. & Poeppel, D. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat. Neurosci. 18, 903–911 (2015).
Norman-Haignere, S. V. et al. A neural population selective for song in human auditory cortex. Curr. Biol. 32, 1470–1484.e12 (2022).
Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).
Friederici, A. D. The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn. Sci. 16, 262–268 (2012).
Wilson, S. M. et al. Recovery from aphasia in the first year after stroke. Brain 146, 1021–1039 (2023).
Radford, A. et al. Language models are unsupervised multitask learners. OpenAI blog 1, 9 (2019).
Jain, S. & Huth, A. Incorporating context into language encoding models for fMRI. in Proc. 32nd International Conf. Neural Information Processing Systems (eds Bengio, S. et al.) (Curran Associates, 2018).
Schrimpf, M. et al. The neural architecture of language: Integrative modeling converges on predictive processing. Proc. Natl Acad. Sci. USA 118, e2105646118 (2021).
Caucheteux, C. & King, J. R. Brains and algorithms partially converge in natural language processing. Commun. Biol. 5, 134 (2022).
Goldstein, A. et al. Shared computational principles for language processing in humans and deep language models. Nat. Neurosci. 25, 369–380 (2022).
Tuckute, T., Kanwisher, N. & Fedorenko, E. Language in brains, minds, and machines. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev-neuro-120623-101142 (2024).
Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).
Leonard, M. K. et al. Large-scale single-neuron speech sound encoding across the depth of human cortex. Nature 626, 593–602 (2024).
Fodor, J. A. The Language of Thought (Crowell, 1975).
Fodor, J. A. & Pylyshyn, Z. W. Connectionism and cognitive architecture: a critical analysis. Cognition 28, 3–71 (1988).
Rule, J. S., Tenenbaum, J. B. & Piantadosi, S. T. The child as hacker. Trends Cogn. Sci. 24, 900–915 (2020).
Quilty-Dunn, J., Porot, N. & Mandelbaum, E. The best game in town: the reemergence of the language-of-thought hypothesis across the cognitive sciences. Behav. Brain Sci. 46, e261 (2023).
Rumelhart, D. E., McClelland, J. L. & PDP Research Group. Parallel Distributed Processing, Vol. 1: Explorations in the Microstructure of Cognition: Foundations (MIT Press, 1986).
Smolensky, P. & Legendre, G. The Harmonic Mind: From Neural Computation to Optimality–Theoretic Grammar Vol. 1: Cognitive Architecture (MIT Press, 2006).
Frankland, S. M. & Greene, J. D. Concepts and compositionality: in search of the brain’s language of thought. Annu. Rev. Psychol. 71, 273–303 (2020).
Lake, B. M. & Baroni, M. Human-like systematic generalization through a meta-learning neural network. Nature 623, 115–121 (2023).
Dehaene-Lambertz, G., Dehaene, S. & Hertz-Pannier, L. Functional neuroimaging of speech perception in infants. Science 298, 2013–2015 (2002).
Pena, M. et al. Sounds and silence: an optical topography study of language recognition at birth. Proc. Natl Acad. Sci. USA 100, 11702–11705 (2003).
Cristia, A., Minagawa, Y. & Dupoux, E. Responses to vocalizations and auditory controls in the human newborn brain. PLoS ONE 9, e115162 (2014).
Acknowledgements
The authors thank A. Ivanova, R. Jackendoff, N. Kanwisher, K. Mahowald, R. Seyfarth, C. Shain and N. Zaslavsky for helpful comments on earlier drafts of the manuscript; N. Caselli, M. Coppola, A. Hillis, L. Menn, R. Varley and S. Wilson for comments on specific sections; C. Casto, T. Regev, F. Mollica and R. Futrell for help with the figures; and S. Swords, N. Jhingan, H. S. Kim and A. Sathe for help with references. E.F. was supported by NIH awards DC016607 and DC016950 from NIDCD, NS121471 from NINDS, and from funds from MIT’s McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, and Quest for Intelligence.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to conceiving, writing and revising this piece.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Angelika Kratzer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fedorenko, E., Piantadosi, S.T. & Gibson, E.A.F. Language is primarily a tool for communication rather than thought. Nature 630, 575–586 (2024). https://doi.org/10.1038/s41586-024-07522-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-024-07522-w
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.