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 26 

The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of 27 

proteins and their interactions, enabling a huge range of applications in protein modelling 28 

and design2–6. In this paper, we describe our AlphaFold 3 model with a substantially 29 

updated diffusion-based architecture, which is capable of joint structure prediction of 30 

complexes including proteins, nucleic acids, small molecules, ions, and modified residues. 31 

The new AlphaFold model demonstrates significantly improved accuracy over many 32 

previous specialised tools: far greater accuracy on protein-ligand interactions than state of 33 

the art docking tools, much higher accuracy on protein-nucleic acid interactions than 34 

nucleic-acid-specific predictors, and significantly higher antibody-antigen prediction 35 

accuracy than AlphaFold-Multimer v2.37,8. Together these results show that high accuracy 36 

modelling across biomolecular space is possible within a single unified deep learning 37 

framework. 38 ACCELE
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Main Text 39 

Introduction 40 

Accurate models of biological complexes are critical to our understanding of cellular functions 41 

and for the rational design of therapeutics2–4,9. Enormous progress has been achieved in protein 42 

structure prediction with the development of AlphaFold1, and the field has grown tremendously 43 

with a number of later methods that build on the ideas and techniques of AlphaFold 210–12. 44 

Almost immediately after AlphaFold became available, it was shown that simple input 45 

modifications would enable surprisingly accurate protein interaction predictions13–15 and that 46 

training AlphaFold 2 specifically for protein interaction prediction yielded a highly accurate 47 

system7.  48 

 49 

These successes lead to the question of whether it is possible to accurately predict the structure 50 

of complexes containing a much wider range of biomolecules, including ligands, ions, nucleic 51 

acids, and modified residues, within a deep learning framework. A wide range of predictors for 52 

various specific interaction types have been developed16–28, as well as one generalist method 53 

developed concurrently with the present work29, but the accuracy of such deep learning attempts 54 

has been mixed and often below that of physics-inspired methods30,31. Almost all these methods 55 

are also highly specialised to particular interaction types and cannot predict the structure of 56 

general biomolecular complexes containing many types of entities. 57 

 58 

Here, we present AlphaFold 3 (AF3), a model that is capable of high accuracy prediction of 59 

complexes containing nearly all molecular types present in the Protein Data Bank32 (PDB) (Fig. 60 

1a,b). In all but one category it achieves a significantly higher performance than strong methods 61 

that specialise in just the given task (Fig. 1c, Extended Data Table 1) including higher accuracy 62 

at protein structure and the structure of protein-protein interactions.  63 

 64 

This is achieved by a substantial evolution of the AlphaFold 2 architecture and training 65 

procedure (Fig. 1d) both to accommodate more general chemical structures and to improve the 66 

data efficiency of learning. The system reduces the amount of multiple sequence alignment 67 

(MSA) processing by replacing the AlphaFold 2 Evoformer with the simpler Pairformer Module 68 

(Fig. 2a). Furthermore it directly predicts the raw atom coordinates with a Diffusion Module, 69 

replacing the AlphaFold 2 Structure Module that operated on amino-acid-specific frames and 70 

side chain torsion angles (Fig. 2b). The multiscale nature of the diffusion process (low noise 71 

levels induce the network to improve local structure) also allow us to eliminate stereochemical 72 

losses and most special handling of bonding patterns in the network, easily accommodating 73 

arbitrary chemical components. 74 

 75 ACCELE
RATED ARTIC

LE
 PREVIEW



 

Network architecture and training 76 

The overall structure of AF3 (Fig. 1d, Supplementary Methods 3) echoes that of AlphaFold 2 77 

with a large trunk evolving a pairwise representation of the chemical complex followed by a 78 

Structure Module that uses the pairwise representation to generate explicit atomic positions, but 79 

there are large differences in each major component. These modifications were driven both by 80 

the need to accommodate a wide range of chemical entities without excessive special-casing and 81 

by observations of AlphaFold 2 performance with different modifications. Within the trunk, 82 

MSA processing is substantially de-emphasized with a much smaller and simpler MSA 83 

embedding block (Supplementary Methods 3.3). Compared to the original Evoformer from 84 

AlphaFold 2 the number of blocks are reduced to four, the processing of the MSA representation 85 

uses an inexpensive pair-weighted averaging, and only the pair representation is used for later 86 

processing steps. The "Pairformer" (Fig. 2a, Supplementary Methods 3.6) replaces the 87 

"Evoformer" of AlphaFold 2 as the dominant processing block. It operates only on the pair 88 

representation and the single representation; the MSA representation is not retained and all 89 

information passes via the pair representation. The pair processing and the number of blocks (48) 90 

is largely unchanged from AlphaFold 2. The resulting pair and single representation together 91 

with the input representation are passed to the new Diffusion Module (Fig. 2b) that replaces the 92 

Structure Module of AlphaFold 2.  93 

 94 

The Diffusion Module (Fig. 2b, Supplementary Methods 3.7) operates directly on raw atom 95 

coordinates, and on a coarse abstract token representation, without rotational frames or any 96 

equivariant processing. We had observed in AlphaFold 2 that removing most of the complexity 97 

of the Structure Module had only a modest effect on prediction accuracy, and maintaining the 98 

backbone frame and side chain torsion representation add quite a bit of complexity for general 99 

molecular graphs. Similarly AlphaFold 2 required carefully tuned stereochemical violation 100 

penalties during training to enforce chemical plausibility of the resulting structures. We use a 101 

relatively standard diffusion approach34 in which the diffusion model is trained to receive 102 

“noised” atomic coordinates then predict the true coordinates. This task requires the network to 103 

learn protein structure at a variety of length scales, where the denoising task at small noise 104 

emphasises understanding very local stereochemistry and the denoising task at high noise 105 

emphasises large-scale structure of the system. At inference time, random noise is sampled and 106 

then recurrently denoised to produce a final structure. Importantly, this is a generative training 107 

procedure which produces a distribution of answers. This means that, for each answer, the local 108 

structure will be sharply defined (e.g. side chain bond geometry) even when the network is 109 

uncertain about the positions. For this reason, we are able to avoid both torsion-based 110 

parametrizations of the residues and violation losses on the structure, while handling the full 111 

complexity of general ligands. Similarly to some recent work35, we find that no invariance or 112 

equivariance with respect to global rotations and translation of the molecule are required in the 113 

architecture and so we omit them to simplify the machine learning architecture. 114 

 115 

The use of a generative diffusion approach comes with some technical challenges that we needed 116 

to address. The biggest issue is that generative models are prone to hallucination36 where the 117 
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model may invent plausible-looking structure even in unstructured regions. To counteract this 118 

effect, we use a novel cross-distillation method where we enrich the training data with 119 

AlphaFold-Multimer v2.37,8 predicted structures. In these structures, unstructured regions are 120 

typically represented by long extended loops instead of compact structures and training on them 121 

“teaches” AlphaFold 3 to mimic this behaviour. This cross-distillation greatly reduced the 122 

hallucination behaviour of AF3 (Extended Data Fig. 1 for disorder prediction results on the 123 

CAID 237 benchmark set). 124 

 125 

We also developed confidence measures that predict the atom-level and pairwise errors in our 126 

final structures. In AlphaFold 2, this was done directly by regressing the error in the output of the 127 

Structure Module during training. This procedure is not applicable to diffusion training however, 128 

since only a single step of the diffusion is trained instead of a full structure generation (Fig. 2c). 129 

To remedy this, we developed a diffusion “rollout” procedure for the full structure prediction 130 

generation during training (using a larger step size than normal; see Fig. 2c "mini-rollout"). This 131 

predicted structure is then used to permute the symmetric ground truth chains and ligands, and to 132 

compute the performance metrics to train the confidence head. The confidence head uses the 133 

pairwise representation to predict the LDDT (pLDDT) and a predicted aligned error (PAE) 134 

matrix as in AlphaFold 2, as well as a distance error matrix (PDE) which is the error in the 135 

distance matrix of the predicted structure as compared to the true structure (see Supplementary 136 

Methods 4.3 for details). 137 

 138 

Fig. 2d shows that during initial training the model learns quickly to predict the local structures 139 

(all intra chain metrics go up quickly and reach 97% of the maximum performance within the 140 

first 20k training steps) while the model needs considerably longer to learn the global 141 

constellation (the interface metrics go up slowly and protein-protein interface LDDT passes the 142 

97% bar only after 60k steps). During AF3 development we observed that some model 143 

capabilities topped out relatively early and started to decline (most likely due to overfitting to the 144 

limited number of training samples for this capability) while other capabilities were still 145 

undertrained. We addressed this by increasing / decreasing the sampling probability for the 146 

corresponding training sets (Supplementary Methods 2.5.1) and by an early stopping using a 147 

weighted average of all above metrics and some additional metrics to select the best model 148 

checkpoint (Supplementary Table 7). The fine tuning stages with the larger crop sizes improve 149 

the model on all metrics with an especially high uplift on protein-protein interfaces (Extended 150 

Data Fig. 2). 151 

Accuracy across complex types 152 

AF3 can predict structures from input polymer sequences, residue modifications, and ligand 153 

SMILES. In Fig. 3 we show a selection of examples highlighting the ability of the model to 154 

generalise to a number of biologically important and therapeutically relevant modalities. In 155 

selecting these examples, we considered novelty in terms of the similarity of individual chains 156 

and interfaces to the training set (additional information in Supplementary Methods 8.1).  157 

 158 
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We evaluate performance of the system on recent interface-specific benchmarks for each 159 

complex type (Fig. 1c, Extended Data Table 1). Performance on protein-ligand interfaces was 160 

evaluated on the PoseBusters benchmark set, composed of 428 protein-ligand structures released 161 

to the PDB in 2021 or later. Since our standard training cutoff date is in 2021, we trained a 162 

separate AF3 model with an earlier training set cutoff (see Methods for details). Accuracy on the 163 

PoseBusters set is reported as the percentage of protein-ligand pairs with pocket-aligned ligand 164 

RMSD of less than 2 Å. The baseline models come in two categories: those that use only protein 165 

sequence and ligand SMILES as input and those that additionally leak information from the 166 

solved protein-ligand test structure. Traditional docking methods use the latter privileged 167 

information, even though that information would not be available in real world use cases. Even 168 

so, AlphaFold 3 greatly outperforms classical docking tools like Vina38,39 even while not using 169 

any structural inputs (Fisher exact p=2.27 * 10-13) and greatly outperforms all other true blind 170 

docking like RoseTTAFold All-Atom (p=4.45 * 10-25). Extended Data Fig. 3 shows three 171 

examples where AlphaFold 3 achieves accurate predictions but docking tools Vina and Gold do 172 

not38. PoseBusters analysis was done using a 2019-09-30 training cutoff for AlphaFold 3 to 173 

ensure the model was not trained on any PoseBusters structures. To compare to RoseTTAFold 174 

All-Atom results, we used PoseBusters Version 1. Version 2 (crystal contacts removed from the 175 

benchmark set) results including quality metrics are shown in Extended Data Fig. 4b-f and in 176 

Extended Data Table 1. We use multiple seeds to ensure correct chirality and avoid slight 177 

protein-ligand clashing (as opposed to a method like diffusion guidance to enforce) but are 178 

typically able to produce high quality stereochemistry. Separately, we also train a version of 179 

AlphaFold 3 that receives the “pocket information” as used in some recent deep learning 180 

work24,26 (Extended Data Fig. 4a for results). 181 

 182 

AF3 predicts protein-nucleic complexes and RNA structures with higher accuracy than 183 

RoseTTAFold2NA40 (Fig. 1c second plot). As RoseTTAFold2NA is only validated on structures 184 

below 1000 residues, we use only structures below 1000 residues from our Recent PDB 185 

evaluation set for this comparison (see Methods for details). AlphaFold 3 is able to predict 186 

protein-nucleic structures with thousands of residues, an example of which is shown in Fig. 3a. 187 

Note that we do not compare directly to RoseTTAFold All-Atom, but benchmarks indicate that 188 

RoseTTAFold All-Atom is comparable to slightly less accurate than RoseTTAFold2NA for 189 

nucleic acid predictions29. 190 

 191 

We also evaluated AF3 performance on the 10 publicly available CASP15 RNA targets: We 192 

achieve a higher average performance than RoseTTAFold2NA and AIchemy_RNA27 (the best 193 

AI-based submission in CASP1518,31) on the respective common subsets of our and their 194 

predictions (see Extended Data Fig. 5a for detailed results). We do not reach the performance 195 

of the best human-expert-aided CASP15 submission AIchemy_RNA241 (Fig. 1c, centre left). 196 

Due to limited dataset sizes, we do not report significance test statistics here. Further analysis of 197 

the accuracy of predicting nucleic acids alone (without proteins) is shown in Extended Data 198 

Fig. 5b. 199 

 200 
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Covalent modifications (bonded ligands, glycosylation, and modified protein residues and 201 

nucleic acid bases) are also accurately predicted by AF3 (Fig. 1c, centre right). Modifications 202 

include those to any polymer residue (protein, RNA or DNA). We report accuracy as the 203 

percentage of successful predictions (pocket RMSD < 2 Å). We apply quality-filters to the 204 

bonded ligands and glycosylation dataset (as does PoseBusters): We only include ligands with 205 

high-quality experimental data (ranking_model_fit > 0.5 according to the RCSB structure 206 

validation report, that is, X-ray structures with a model quality above the median). As with the 207 

PoseBusters set, the bonded ligands and glycosylation datasets are not filtered by homology to 208 

the training data set. Filtering based on the bound polymer chain homology (using polymer 209 

template similarity < 40) yielded only 5 clusters for bonded ligands and 7 clusters for 210 

glycosylation. We exclude multi-residue glycans here, because the RCSB validation report does 211 

not provide a ranking_model_fit value for them. The percentage of successful predictions 212 

(pocket RMSD < 2 Å) for multi-residue glycans on all-quality experimental data is 42.1% 213 

(N=131 clusters) which is slightly lower than the success rate for single-residue glycans on all-214 

quality experimental data of 46.1% (N=167). The modified residues dataset is filtered similarly 215 

to our other polymer test sets: it contains only modified residues in polymer chains with low 216 

homology to the training set (see Methods for details). See Extended Data Table 1 for detailed 217 

results; Extended Data Fig. 6 for examples of predicted protein, DNA, and RNA structures with 218 

covalent modifications including analysis of the impact phosphorylation has on predictions. 219 

 220 

While expanding in modelling capabilities, AF3 has also improved in protein complex accuracy 221 

relative to AlphaFold-Multimer v2.37,8 (AF-M 2.3). Generally, protein-protein prediction success 222 

(DockQ42 > 0.23) has increased (paired Wilcoxon signed-rank test, p=1.8 * 10-18), with antibody-223 

protein interaction prediction in particular showing a marked improvement (Fig. 1c right, paired 224 

Wilcoxon signed-rank test, p=6.5  * 10-5, predictions top ranked from 1000 rather than the 225 

typical 5 seeds, see Fig. 5a for details). Protein monomer LDDT improvement is also significant 226 

(paired Wilcoxon signed-rank test, p=1.7 * 10-34). AF3 has a very similar dependence on MSA 227 

depth to AF-M 2.3; proteins with shallow MSAs are predicted with lower accuracy (see 228 

Extended Data Fig. 7a for a comparison of the dependence of single chain LDDT on MSA 229 

depth).  230 

 231 

Predicted confidences track accuracy 232 

As with AlphaFold 2, AlphaFold 3 confidence measures are well-calibrated with accuracy. Our 233 

confidence analysis is performed on the recent PDB evaluation set, with no homology filtering 234 

and including peptides. The ligands category is filtered to high quality experimental structures as 235 

described above, and considers standard non-bonded ligands only. See Extended Data Fig. 8 for 236 

a similar assessment on bonded ligand and other interfaces. All statistics are cluster-weighted 237 

(see Methods for details) and consider the top-ranked prediction only (see Supplementary 238 

Methods 5.9.3 for ranking details). 239 

 240 
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In Fig. 4a top row we plot chain pair ipTM (interface predicted TM score43; see Supplementary 241 

Methods 5.9.1) against interface accuracy measures: protein-protein DockQ, protein-nucleic 242 

iLDDT, and protein-ligand success, with success defined as percent of examples under 243 

thresholded pocked-aligned RMSD values. In Fig. 4a bottom row we plot average pLDDT per 244 

protein, nucleotide or ligand entity against our bespoke LDDT_to_polymer metric (for metrics 245 

details, see Methods), which is closely related to the training target of the pLDDT predictor. 246 

 247 

In Fig. 4b-e we highlight a single example prediction of 7T82, where per-atom pLDDT 248 

colouring identifies unconfident chain tails, somewhat confident interfaces, and otherwise 249 

confident secondary structure. In Fig. 4c the same prediction is coloured by chain, along with 250 

DockQ interface scores in Fig. 4d and per-chain colouring displayed on the axes for reference. 251 

We see from Fig. 4e that PAE confidence is high for pink-grey and blue-orange residue pairs 252 

where DockQ > 0.7, and least confident about pink-orange and pink-blue residue pairs which 253 

have DockQ ≈ 0. See Extended Data Fig. 5c-d for a similar PAE analysis on an example with 254 

protein and nucleic acid chains. 255 

 256 

Model limitations 257 

We note model limitations of AlphaFold 3 with respect to stereochemistry, hallucinations, 258 

dynamics, and accuracy for certain targets.  259 

 260 

On stereochemistry, we note two main classes of violations. The first is that the model outputs do 261 

not always respect chirality (Fig. 5b), despite the model receiving reference structures with 262 

correct chirality as input features. To address this in the PoseBusters benchmark, we included a 263 

penalty for chirality violation in our ranking formula for model predictions. Despite this, we still 264 

observe a chirality violation rate of 4.4% in the benchmark. The second class of stereochemical 265 

violations is a tendency of the model to occasionally produce overlapping (“clashing”) atoms in 266 

the predictions. This sometimes manifests as extreme violations in homomers where entire 267 

chains have been observed to overlap (Fig. 5e). Penalising clashes during ranking (see 268 

Supplementary Methods 5.9.3) reduces the occurrence of this failure mode but does not 269 

eliminate them. Almost all remaining clashes occur for protein-nucleic complexes with both 270 

greater than 100 nucleotides and greater than 2,000 residues in total. 271 

 272 

We note that the switch from the non-generative AlphaFold 2 model to the diffusion-based 273 

AlphaFold 3 model introduces the challenge of spurious structural order (hallucinations) in 274 

disordered regions (Fig. 5d, Extended Data Fig. 1). While hallucinated regions are typically 275 

marked as very low confidence, they can lack the distinctive ribbon-like appearance that 276 

AlphaFold 2 produces in disordered regions. To encourage ribbon-like predictions in AF3, we 277 

use distillation training from AlphaFold 2 predictions, and we add a ranking term to encourage 278 

results with more solvent accessible surface area37. 279 

 280 
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A key limitation of protein structure prediction models is that they typically predict static 281 

structures as seen in the PDB, not the dynamical behaviour of biomolecular systems in solution. 282 

This limitation persists for AlphaFold 3, where multiple random seeds for either the diffusion 283 

head or the overall network do not produce an approximation of the solution ensemble.  284 

 285 

In some cases, the modelled conformational state may not be correct or comprehensive given the 286 

specified ligands and other inputs. As an example, E3 ubiquitin ligases natively adopt an open 287 

conformation in an apo state and have only been observed in a closed state when bound to 288 

ligands, but AF3 exclusively predicts the closed state for both holo and apo systems44 (Fig. 5c). 289 

Many methods have been developed, particularly around MSA resampling, which assist in 290 

generating diversity from previous AlphaFold models45–47 and may also assist in multi-state 291 

prediction with AF3.  292 

 293 

Despite the large advance in modelling accuracy in AlphaFold 3, there are still many targets for 294 

which accurate modelling can be challenging. To obtain the highest accuracy, it may be 295 

necessary to generate a large number of predictions and rank them, which incurs an extra 296 

computational cost. A class of targets where we observe this effect strongly is antibody-antigen 297 

complexes similar to other recent work48. Fig. 5a shows that for AlphaFold 3, top-ranked 298 

predictions keep improving with more model seeds, even at as many as 1000 (Wilcoxon signed 299 

rank test between 5 and 1000 seeds, p=2.0 * 10-5 for % correct and p=0.009 for % very high 300 

accuracy; ranking by protein-protein interface ipTM). This large improvement with many seeds 301 

isn’t observed in general for other classes of molecules (see Extended Data Fig. 7b). Using only 302 

one diffusion sample per model seed for the AF3 predictions rather than five (not illustrated) 303 

does not change results significantly, indicating that running more model seeds is necessary for 304 

antibody score improvements, rather than just more diffusion samples. 305 

 306 

Discussion 307 

The core challenge of molecular biology is to understand and ultimately regulate the complex 308 

atomic interactions of biological systems. The AlphaFold 3 model takes a large step in this 309 

direction, demonstrating that it is possible to accurately predict the structure of a wide range of 310 

biomolecular systems in a unified framework. While there are still substantial challenges to 311 

achieve highly accurate predictions across all interaction types, we demonstrate that it is possible 312 

to build a deep learning system that shows strong coverage and generalisation for all these 313 

interactions. We also demonstrate that the lack of cross-entity evolutionary information is not a 314 

substantial blocker to progress in predicting these interactions, and moreover substantial 315 

improvement in antibody results suggests AlphaFold-derived methods are able to model the 316 

chemistry and physics of classes of molecular interactions without dependence on MSAs. 317 

Finally, the large improvement in protein-ligand structure prediction shows that it is possible to 318 

handle the wide diversity of chemical space within a general deep learning framework and 319 

without resorting to an artificial separation between protein structure prediction and ligand 320 

docking. 321 
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 322 

The development of bottom-up modelling of cellular components is a key step in unravelling the 323 

complexity of molecular regulation within the cell, and the performance of AlphaFold 3 shows 324 

that developing the right deep learning frameworks can massively reduce the amount of data 325 

required to obtain biologically relevant performance on these tasks and amplify the impact of the 326 

data already collected. We expect that structural modelling will continue to improve not only due 327 

to deep learning advances but also because continuing methodological advances in experimental 328 

structure determination, such as the dramatic improvements in cryo electron microscopy and 329 

tomography, will provide a wealth of new training data to further the improve the generalisation 330 

capability of such models. The parallel developments of experimental and computational 331 

methods promise to propel us further into an era of structurally informed biological 332 

understanding and therapeutic development. 333 

Figure Captions 334 

 335 

Fig. 1 | AlphaFold 3 accurately predicts structures across biomolecular complexes. a, Example structure 336 
predicted with AF3: bacterial CRP/FNR family transcriptional regulator protein bound to DNA and cGMP (PDB ID 337 
7PZB, full complex LDDT33: 82.8, GDT: 90.1). b, Example structure predicted with AF3: human coronavirus OC43 338 
spike protein, 4665 residues, heavily glycosylated and bound by neutralising antibodies (PDB ID 7PNM, full 339 
complex LDDT: 83.0, GDT: 83.1). c, Performance on PoseBusters (V1, August 2023 release), our Recent PDB 340 
evaluation set, and CASP15 RNA. Metrics are % of pocket-aligned ligand RMSD < 2 Å for ligands and covalent 341 
modifications, interface LDDT for protein-nucleic acid complexes, LDDT for nucleic acid and protein monomers, 342 
and % DockQ > 0.23 for protein-protein and protein-antibody interfaces. All scores are reported from the top 343 
confidence-ranked sample out of 5 model seeds (each with 5 diffusion samples), except for protein-antibody scores 344 
which were ranked across 1000 model seeds for both models (each AF3 seed with 5 diffusion samples). See 345 
Methods for sampling and ranking details. For ligands, N indicates number of targets; for nucleic acids, N indicates 346 
number of structures; for modifications, N indicates clusters, and for proteins N indicates clusters. Bar heights 347 
indicate means; error bars indicate exact binomial distribution 95% confidence intervals for PoseBusters and via 348 
10,000 bootstrap resamples for all others. Significance levels calculated via two-sided Fisher’s Exact Test for 349 
PoseBusters and via two-sided Wilcoxon signed rank test for all others. *** for p < 0.001, ** for p<0.01. P-values 350 
(left to right): 2.27*10-13, 2.57*10-3, 2.78*10-3, 7.28*10-12, 1.81*10-18, 6.54*10-5, and 1.74*10-34. d, AF3 architecture 351 
for inference. Rectangles represent processing modules, arrows show the data flow. yellow: input data, blue: abstract 352 
network activations, green: output data. Coloured balls represent physical atom coordinates. 353 

 354 

Fig. 2 | Architectural and training details. a, Pairformer Module. Input and output: pair representation with 355 
dimension (n, n, c) and single representation with dimension (n, c). n: number of tokens (polymer residues and 356 
atoms), c: number of channels (128 for the pair representation, 384 for the single representation). Each of the 48 357 
blocks has an independent set of trainable parameters.  b, Diffusion Module. Input: coarse arrays depict per-token 358 
representations (green: inputs, blue: pair, red: single). Fine arrays depict per-atom representations. Coloured balls 359 
represent physical atom coordinates. c, training setup (distogram head omitted) starting from the end of the network 360 
trunk. Coloured arrays: activations from the network trunk (green: inputs, blue: pair, red: single). Blue arrows: 361 
abstract activation arrays; yellow arrows: ground truth data; green arrows: predicted data. Stop sign: stop gradient 362 
operation. Both depicted Diffusion Modules share weights. d, Training curves for initial training and fine tuning 363 
stages, showing LDDT on our evaluation set as a function of optimizer steps. The scatter plot shows the raw data 364 
points and the lines show the smoothed performance using a median filter with a kernel width of 9 data points. The 365 
crosses mark the point where the smoothed performance reaches 97% of its initial training maximum. 366 
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 367 

Fig. 3 | Examples of predicted complexes. : Selected structure predictions from AF3. Predicted protein chains are 368 
shown in blue (predicted antibody in green), predicted ligands and glycans in orange, predicted RNA in purple, and 369 
ground truth in grey. a, Human 40S small ribosomal subunit (7663 residues) including 18S ribosomal RNA and 370 
Met-tRNAi

Met (opaque purple) in complex with translation initiation factors eIF1A and eIF5B (opaque blue; PDB ID 371 
7TQL, full complex LDDT: 87.7, GDT: 86.9). b,Glycosylated globular portion of an EXTL3 homodimer (PDB ID 372 
7AU2, mean pocked-aligned RMSD: 1.10 Å). c, Mesothelin C-terminal peptide bound to the monoclonal antibody 373 
15B6 (PDB ID 7U8C, DockQ: 0.85). d, LGK974, a clinical stage inhibitor, bound to PORCN in complex with the 374 
WNT3A peptide (PDB ID 7URD, ligand RMSD 1.00 Å). e, (5S,6S)-O7-sulfo DADH bound to the AziU3/U2 375 
complex with a novel fold (PDB ID 7WUX, ligand RMSD 1.92 Å). f, Analog of NIH-12848 bound to an allosteric 376 
site of PI5P4Kγ (PDB ID 7QIE, ligand RMSD 0.37 Å). 377 
 378 
Fig. 4 | AlphaFold 3 confidences track accuracy. a (top row), Accuracy of protein-containing interfaces as a 379 
function of chain pair ipTM. a (bottom row), LDDT_to_polymer accuracy evaluated for various chain types as a 380 
function of chain-averaged pLDDT. Box, centerline, and whiskers boundaries are at (25%, 75%) intervals, median, 381 
and (5%, 95%) intervals. N values report the number of clusters in each band. b, Predicted structure of PDB ID 382 
7T82 coloured by pLDDT (orange: 0-50, yellow: 50-70, cyan 70-90, and blue 90-100). c, same prediction coloured 383 
by chain. d, DockQ scores for protein-protein interfaces. e, Predicted Aligned Error (PAE) matrix of same 384 
prediction (darker is more confident), with chain colouring of panel c on side-bars. Dashed black lines indicate chain 385 
boundaries. 386 

 387 

Fig. 5 | Model limitations. a, Antibody prediction quality increases with the number of model seeds. Quality of top-388 
ranked, low homology, antibody-antigen interface predictions as a function of number of seeds. Each datapoint 389 
shows the mean over 1,000 random samples (with replacement) of seeds to rank over, out of 1200 seeds. Confidence 390 
intervals are 95% bootstraps over 10,000 resamples of cluster scores at each datapoint. Samples per interface ranked 391 
by protein-protein ipTM. Significance tests are by a two-sided Wilcoxon signed rank test. N = 65 clusters. *** for p 392 
< 0.001. P-values: 2.0 * 10-5 for % correct and p=0.009 for % very high accuracy. b, Prediction (coloured) and 393 
ground truth (grey) structures of Thermotoga maritima alpha-glucuronidase and beta-D-glucuronic acid, a target 394 
from the PoseBusters set (PDB ID 7CTM). AF3 predicts alpha-D-glucuronic acid, differing chiral centre indicated 395 
by an asterisk. The prediction shown is top-ranked by ligand-protein ipTM and with a chirality and clash penalty.  c, 396 
Conformation coverage is limited. Ground truth structures (grey) of cereblon in open (apo PDB ID 8CVP, left) and 397 
closed (holo mezigdomide-bound, PDB ID 8D7U, right) conformations. Predictions (blue) of both apo (with 10 398 
overlaid samples) and holo structures are in the closed conformation. Dashed line indicates distance between the N-399 
terminal Lon protease-like and C-terminal thalidomide-binding domain. d, A nuclear pore complex with 1,854 400 
unresolved residues (PDB ID 7F60). Ground truth (left) and predictions from AF-M 2.3 (middle) and AF3 (right). e, 401 
Prediction of a trinucleosome with overlapping DNA (pink) and protein (blue) chains (PDB ID 7PEU); highlighted 402 
are overlapping protein chains B and J and self-overlapping DNA chain AA. Unless otherwise stated, predictions are 403 
top-ranked by our global complex ranking metric with chiral mismatch and steric clash penalties (see 404 
Supplementary Methods 5.9.1). 405 

 406 

Citations 407 

1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–408 

589 (2021). 409 

2. Kreitz, J. et al. Programmable protein delivery with a bacterial contractile injection system. 410 

Nature 616, 357–364 (2023). 411 

ACCELE
RATED ARTIC

LE
 PREVIEW



 

3. Lim, Y. et al. In silico protein interaction screening uncovers DONSON’s role in replication 412 

initiation. Science 381, eadi3448 (2023). 413 

4. Mosalaganti, S. et al. AI-based structure prediction empowers integrative structural analysis of 414 

human nuclear pores. Science 376, eabm9506 (2022). 415 

5. Anand, N. & Achim, T. Protein Structure and Sequence Generation with Equivariant Denoising 416 

Diffusion Probabilistic Models. arXiv preprint arXiv:2205.15019 (2022) 417 

doi:10.48550/arXiv.2205.15019. 418 

6. Yang, Z., Zeng, X., Zhao, Y. & Chen, R. AlphaFold2 and its applications in the fields of biology 419 

and medicine. Signal Transduction and Targeted Therapy 8, 1–14 (2023). 420 

7. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 421 

2021.10.04.463034 (2022) doi:10.1101/2021.10.04.463034. 422 

8. alphafold/docs/technical_note_v2.3.0.md at main · google-deepmind/alphafold. GitHub 423 

https://github.com/google-deepmind/alphafold/blob/main/docs/technical_note_v2.3.0.md. 424 

9. Structure-based drug design with geometric deep learning. Curr. Opin. Struct. Biol. 79, 102548 425 

(2023). 426 

10. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language 427 

model. Science 379, 1123–1130 (2023). 428 

11. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track 429 

neural network. Science (2021) doi:10.1126/science.abj8754. 430 

12. Wu, R. et al. High-resolution de novo structure prediction from primary sequence. bioRxiv 431 

2022.07.21.500999 (2022) doi:10.1101/2022.07.21.500999. 432 

13. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using 433 

AlphaFold2. Nat. Commun. 13, 1–11 (2022). 434 

14. [No title]. X (formerly Twitter) 435 

https://twitter.com/Ag_smith/status/1417063635000598528?lang=en-GB. 436 

15. [No title]. X (formerly Twitter) 437 

https://twitter.com/minkbaek/status/1417538291709071362?lang=en. 438 

ACCELE
RATED ARTIC

LE
 PREVIEW



 

16. Qiao, Z., Nie, W., Vahdat, A., Miller, T. F., III & Anandkumar, A. State-specific protein-ligand 439 

complex structure prediction with a multi-scale deep generative model. arXiv preprint 440 

arXiv:2209.15171 (2022) doi:10.48550/arXiv.2209.15171. 441 

17. Nakata, S., Mori, Y. & Tanaka, S. End-to-end protein–ligand complex structure generation with 442 

diffusion-based generative models. BMC Bioinformatics 24, 1–18 (2023). 443 

18. Baek, M. et al. Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. 444 

Nat. Methods 1–5 (2023). 445 

19. Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 446 

(2021). 447 

20. Jiang, D. et al. InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning 448 

Framework for Accurate Protein-Ligand Interaction Predictions. J. Med. Chem. 64, (2021). 449 

21. Jiang, H. et al. Predicting Protein–Ligand Docking Structure with Graph Neural Network. J. 450 

Chem. Inf. Model. (2022) doi:10.1021/acs.jcim.2c00127. 451 

22. Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T. DiffDock: Diffusion Steps, Twists, and 452 

Turns for Molecular Docking. arXiv preprint arXiv:2210.01776 (2022) 453 

doi:10.48550/arXiv.2210.01776. 454 

23. Stärk, H., Ganea, O.-E., Pattanaik, L., Barzilay, R. & Jaakkola, T. EquiBind: Geometric Deep 455 

Learning for Drug Binding Structure Prediction. arXiv preprint arXiv:2202.05146 (2022) 456 

doi:10.48550/arXiv.2202.05146. 457 

24. Liao, Z. et al. DeepDock: Enhancing Ligand-protein Interaction Prediction by a Combination of 458 

Ligand and Structure Information. 2019 IEEE International Conference on Bioinformatics and 459 

Biomedicine (BIBM), San Diego, CA, USA, 311 – 317 (2019). 460 

25. Lu, W. et al. TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein Binding 461 

Structure Prediction. Adv. Neural Inf. Process. Syst. 35, 7236–7249 (2022). 462 

26. Zhou, G. et al. Uni-Mol: A Universal 3D Molecular Representation Learning Framework. (2023) 463 

doi:10.26434/chemrxiv-2022-jjm0j-v4. 464 

27. Shen, T. et al. E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D 465 

ACCELE
RATED ARTIC

LE
 PREVIEW



 

Structure Prediction. (2022). 466 

28. van Dijk, M. & Bonvin, A. M. J. J. Pushing the limits of what is achievable in protein–DNA 467 

docking: benchmarking HADDOCK’s performance. Nucleic Acids Res. 38, 5634–5647 (2010). 468 

29. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. 469 

Science 384, eadl2528 (2024). 470 

30. Buttenschoen, M., Morris, G. M. & Deane, C. M. PoseBusters: AI-based docking methods fail to 471 

generate physically valid poses or generalise to novel sequences. arXiv preprint arXiv:2308.05777 472 

(2023) doi:10.48550/arXiv.2308.05777. 473 

31. Das, R. et al. Assessment of three-dimensional RNA structure prediction in CASP15. Proteins 474 

91, (2023). 475 

32. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). 476 

33. Mariani, V., Biasini, M., Barbato, A. & Schwede, T. lDDT: a local superposition-free score for 477 

comparing protein structures and models using distance difference tests. Bioinformatics 29, 2722–478 

2728 (2013). 479 

34. Karras, T., Aittala, M., Aila, T. & Laine, S. Elucidating the Design Space of Diffusion-Based 480 

Generative Models. arXiv preprint arXiv:2206.00364 (2022) doi:10.48550/arXiv.2206.00364. 481 

35. Wang, Y., Elhag, A. A., Jaitly, N., Susskind, J. M. & Bautista, M. A. Generating Molecular 482 

Conformer Fields. arXiv preprint arXiv:2311.17932 (2023) doi:10.48550/arXiv.2311.17932. 483 

36. Ji, Z. et al. Survey of Hallucination in Natural Language Generation. arXiv preprint 484 

arXiv:2202.03629 (2022) doi:10.1145/3571730. 485 

37. Del Conte, A. et al. Critical assessment of protein intrinsic disorder prediction (CAID) - Results 486 

of round 2. Proteins: Struct. Funct. Bioinf. 91, 1925–1934 (2023). 487 

38. Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a 488 

new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 489 

(2010). 490 

39. Miller, E. B. et al. Reliable and Accurate Solution to the Induced Fit Docking Problem for 491 

Protein–Ligand Binding. J. Chem. Theory Comput. (2021) doi:10.1021/acs.jctc.1c00136. 492 

ACCELE
RATED ARTIC

LE
 PREVIEW



 

40. Baek, M. et al. Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. 493 

Nat. Methods 1–5 (2023). 494 

41. Chen, K., Zhou, Y., Wang, S. & Xiong, P. RNA tertiary structure modeling with BRiQ potential 495 

in CASP15. Proteins: Struct. Funct. Bioinf. 91, 1771–1778 (2023). 496 

42. Basu, S. & Wallner, B. DockQ: A Quality Measure for Protein-Protein Docking Models. PLoS 497 

One 11, e0161879 (2016). 498 

43. Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template 499 

quality. Proteins 57, 702–710 (2004). 500 

44. Watson, E. R. et al. Molecular glue CELMoD compounds are regulators of cereblon 501 

conformation. Science 378, 549–553 (2022). 502 

45. Wayment-Steele, H. K. et al. Predicting multiple conformations via sequence clustering and 503 

AlphaFold2. Nature 1–3 (2023). 504 

46. del Alamo, D., Sala, D., Mchaourab, H. S. & Meiler, J. Sampling alternative conformational 505 

states of transporters and receptors with AlphaFold2. (2022) doi:10.7554/eLife.75751. 506 

47. Heo, L. & Feig, M. Multi-state modeling of G-protein coupled receptors at experimental 507 

accuracy. Proteins 90, 1873–1885 (2022). 508 

48. Wallner, B. AFsample: improving multimer prediction with AlphaFold using massive sampling. 509 

Bioinformatics 39, (2023). 510 

Methods 511 

Full algorithm details 512 

Extensive explanations of the components are available in Supplementary Methods 2–5  In 513 

addition, pseudocode is available in Supplementary Algorithms 1–31, network diagrams in 514 

Fig. 1d, Fig. 2a,b,c, and Supplementary Fig. 2, input features in Supplementary Table 5, and 515 

additional hyper parameters for training in Supplementary Tables 3, 4, 7. 516 ACCELE
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Training regime 517 

No structural data used during training was released after 2021-09-30, and for the model used in 518 

PoseBusters evaluations we filtered out PDB32 structures released after 2019-09-30. One 519 

optimizer step uses a mini batch of 256 input data samples and during initial training 256 * 48 = 520 

12,288 diffusion samples. For fine tuning the number of diffusion samples is reduced to 256 * 32 521 

= 8,192. The model is trained in three stages, the initial training with a crop size of 384 tokens 522 

and two sequential fine tuning stages with crop sizes 640 and 768 tokens.  See Supplementary 523 

Methods 5.2 for more details. 524 

Inference regime 525 

No inference time templates or reference ligand position features were released after 2021-09-30, 526 

and in the case of PoseBusters evaluation, an earlier cutoff date of 2019-09-30 was used. The 527 

model can be run with different random seeds to generate alternative results, with a batch of 528 

diffusion samples per seed. Unless otherwise stated, all results are generated by selecting the top 529 

confidence sample from running 5 seeds of the same trained model, with 5 diffusion samples per 530 

model seed, for a total of 25 samples to choose from. Standard crystallisation aids are excluded 531 

from predictions (see Supplementary Table 8). 532 

Results are shown for the top ranked sample and sample ranking depends on whether trying to 533 

select the overall best output globally, or the best output for some chain, interface or modified 534 

residue. Global ranking uses a mix of pTM and ipTM along with terms to reduce cases with large 535 

numbers of clashes and increase rates of disorder, individual chain ranking uses a chain specific 536 

pTM measure, interface ranking uses a bespoke ipTM measure for the relevant chain pair and 537 

modified residue ranking uses average pLDDT over the residue of interest (see Supplementary 538 

Methods 5.9.3 for details). 539 

Metrics 540 

Evaluation compares a predicted structure to the corresponding ground truth structure. If the 541 

complex contains multiple identical entities, assignment of the predicted units to the ground truth 542 

units is found by maximising LDDT. Assignment in local symmetry groups of atoms in ligands 543 

is solved by exhaustive search over the first 1000 per-residue symmetries as given by RDKit. 544 

We measure the quality of the predictions with DockQ, LDDT or pocket-aligned RMSD. For 545 

nucleic-protein interfaces we measure interface accuracy via interface LDDT (iLDDT), which is 546 

calculated from distances between atoms across different chains in the interface. DockQ and 547 

iLDDT are highly correlated (Extended Data Fig. 9), so the standard cutoffs for DockQ can be 548 

translated to equivalent iLDDT cutoffs. Nucleic acid LDDTs (intra-chains and interface) were 549 

calculated with an inclusion radius of 30 Å compared to the usual 15 Å used for proteins, owing 550 

to their larger scale. For confidence calibration assessment, we use a bespoke LDDT, 551 

“LDDT_to_polymer” metric which considers differences from each atom of a given entity to any 552 
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Cα or C1’ polymer atom within its inclusion radius. This is closely related to how the confidence 553 

prediction is trained (see Supplementary Methods 4.3.1 for details). 554 

Pocket-aligned RMSD is computed as follows: the pocket is defined as all heavy atoms within 555 

10 Å of any heavy atom of the ligand, restricted to the primary polymer chain for the ligand or 556 

modified residue being scored, and further restricted to only backbone atoms for proteins. The 557 

primary polymer chain is defined variously: for PoseBusters it is the protein chain with the most 558 

atoms within 10 Å of the ligand, for bonded ligand scores it is the bonded polymer chain and for 559 

modified residues it is the chain that the residue is contained in (minus that residue). The pocket 560 

is used to align the predicted structure to the ground truth structure with least squares rigid 561 

alignment and then RMSD is computed on all heavy atoms of the ligand. 562 

Recent PDB evaluation set 563 

General model evaluation was performed on our Recent PDB set consisting of 8,856 PDB 564 

complexes released between 2022-05-01 and 2023-01-12. The set contains almost all PDB 565 

complexes released during that period less than 5,120 model tokens in size (see Supplementary 566 

Methods 6.1 for details). Single chains and interfaces within each structure were scored 567 

separately rather than only looking at full complex scores, then clustering was applied to chains 568 

and interfaces so that scores could be aggregated first within clusters and then across clusters for 569 

mean scores, or using a weighting of inverse cluster size for distributional statistics (see 570 

Supplementary Methods 6.2 and 6.4 for details). 571 

 572 

Evaluation on ligands excludes standard crystallisation aids (Supplementary Table 8), our 573 

ligand exclusion list (Supplementary Table 9) and glycans (Supplementary Table 10). Bonded 574 

and non-bonded ligands are evaluated separately. Ions are only included when specifically 575 

mentioned (see Supplementary Table 11). 576 

 577 

The Recent PDB set is filtered to a low homology subset (see Supplementary Methods 6.1) for 578 

some results where stated. Homology is defined as sequence identity to sequences in the training 579 

set and is measured via template search (see Supplementary Methods 2.4  for details). 580 

Individual polymer chains in evaluation complexes are filtered out if the maximum sequence 581 

identity to chains in the training set is greater than 40%, where sequence identity is the percent of 582 

residues in the evaluation set chain that are identical to the training set chain. Individual peptide 583 

chains (protein chains with less than 16 residues) are always filtered out. For polymer-polymer 584 

interfaces, if both polymers have greater than 40% sequence identity to two chains in the same 585 

complex in the training set, then the interface is filtered out. For interfaces to a peptide the 586 

interface is filtered out if the non-peptide entity has greater than 40% sequence identity to any 587 

chain in the training set. 588 

 589 

To compare quality of prediction of protein-protein interfaces and protein monomers against that 590 

of AlphaFold-Multimer v2.3 (AF-M 2.38), and to compare dependence of single protein chain 591 

prediction quality on MSA depth, we restrict the low homology Recent PDB set to complexes 592 
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with fewer than 20 protein chains and fewer than 2,560 tokens. We compare against unrelaxed 593 

AF-M 2.3 predictions. 594 

 595 

To study antibody-antigen interface prediction, we filter the low homology Recent PDB set to 596 

complexes that contain at least one protein-protein interface where one of the protein chains is in 597 

one of the two largest PDB chain clusters (these clusters are representative of antibodies). We 598 

further filter to complexes with at most 2,560 tokens and with no unknown amino acids in PDB, 599 

to allow extensive comparison against relaxed predictions of AlphaFold-Multimer v2.3. That 600 

leaves 71 antibody-antigen complexes, containing 166 antibody-antigen interfaces spanning 65 601 

interface clusters. 602 

 603 

MSA depth analysis (Extended Data Fig. 7a) was based on computing the normalised number 604 

of effective sequences (Neff) for each position of a query sequence. Per-residue Neff values were 605 

obtained by counting the number of non-gap residues in the MSA for this position and weighting 606 

the sequences using the Neff scheme49 with a threshold of 80% sequence identity measured on the 607 

region that is non-gap in either sequence. 608 

Nucleic acid prediction baseline 609 

For benchmarking performance on nucleic acid structure prediction, we report baseline 610 

comparisons to an existing machine learning system for protein-nucleic acid and RNA tertiary 611 

structure prediction, RoseTTAFold2NA18. We run the open source RF2NA50 with the same 612 

multiple sequence alignments (MSAs) as were used for AlphaFold 3 predictions. For comparison 613 

between AlphaFold 3 and RF2NA, a subset of our Recent PDB set are chosen to meet the 614 

RF2NA criteria (<1000 total residues and nucleotides). As RF2NA was not trained to predict 615 

systems with DNA and RNA, analysis is limited to targets with only one nucleic acid type. No 616 

system was publically available at time of writing for baseline comparisons on data with 617 

arbitrary combinations of biomolecular types in PDB. 618 

 619 

As an additional baseline for RNA tertiary structure prediction, we evaluate AlphaFold 3 620 

performance on CASP15 RNA targets that are currently publicly available (R1116/8S95, 621 

R1117/8FZA, R1126 (downloaded from the CASP 15 website 622 

https://predictioncenter.org/casp15/TARGETS_PDB/R1126.pdb), R1128/8BTZ, R1136/7ZJ4, 623 

R1138/[7PTK/7PTL], R1189/7YR7, and R1190/7YR6). We compare top-1 ranked predictions, 624 

and where multiple ground truth structures exist (R1136) the prediction is scored against the 625 

closest state. We display comparisons to RF2NA as a representative machine learning system, 626 

AIchemy_RNA2 as the top performing entrant with human intervention, and AIchemy_RNA as 627 

the top performing machine learning system. All entrants’ predictions were downloaded from the 628 

CASP website and scored internally.  629 ACCELE
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PoseBusters 630 

While other analyses used an AlphaFold model trained on PDB data released prior to a cutoff of 631 

2021-09-30, our PoseBusters analysis was conducted on a model (with identical architecture and 632 

similar training schedule) differing only in the use of an earlier 2019-09-30 cutoff. This analysis 633 

therefore did not include training data, inference time templates, or “ref_pos” features released 634 

after this date. 635 

 636 

Inference was performed on the asymmetric unit from specified PDBs, with the following minor 637 

modifications. In several PDB files, chains clashing with the ligand of interest were removed 638 

(7O1T, 7PUV, 7SCW, 7WJB, 7ZXV, 8AIE). Another PDB (8F4J) was too large to inference the 639 

entire system (over 5120 tokens), so we only included protein chains within 20 Å of the ligand of 640 

interest. Five model seeds, each with five diffusion samples, were produced per target, resulting 641 

in 25 predictions, which were ranked by quality and predicted accuracy: the ranking score was 642 

calculated from an ipTM aggregate (Supplementary Methods 5.9.3 point 3), then further 643 

divided by 100 if the ligand had chirality errors or had clashes with the protein. 644 

 645 

For pocket-aligned RMSD, first alignment between the predicted and ground truth structures was 646 

conducted by aligning to ground truth pocket backbone atoms (CA, C, or N atoms within 10 Å of 647 

the ligand of interest) from the primary protein chain (the chain with the greatest number of 648 

contacts within 10 Å of the ligand). The posebusters python package v0.2.751 was used to score 649 

RMSD and violations from the pocket-aligned predictions. 650 

 651 

While AlphaFold models are “blind” to the protein pocket, docking is often performed with 652 

knowledge of the protein pocket residues. For example, Uni-Mol specifies the pocket as any 653 

residue within 6 Å of the heavy atoms in the ligand of interest26. To evaluate the ability of 654 

AlphaFold 3 to “dock” ligands accurately when given pocket information, we fine-tuned a 2019-655 

09-30-cutoff AlphaFold 3 model with an additional token feature specifying pocket-ligand pairs 656 

(Supplementary Methods 2.8). Specifically, an additional token feature was introduced, set to 657 

true for a ligand entity of interest and any pocket residues with heavy atoms within 6 Å of the 658 

ligand entity. At training time a single random ligand entity is chosen to use in this feature. Note 659 

that multiple ligand chains with the same entity (CCD code) may be selected. At inference time, 660 

the ligand entity was chosen based on the ligand of interest’s CCD code, so again multiple ligand 661 

chains were occasionally chosen. Results of this analysis are shown in Extended Data Fig. 4. 662 

Model Performance Analysis and Visualization 663 

Data analysis used Python v3.11.7 (https://www.python.org/), NumPy v1.26.3 664 

(https://github.com/numpy/numpy), SciPy v1.9.3 (https:// www.scipy.org/), seaborn v0.12.2 665 

(https://github.com/mwaskom/seaborn), Matplotlib v3.6.1 666 

(https://github.com/matplotlib/matplotlib), pandas v2.0.3 (https://github.com/pandas-667 

dev/pandas), statsmodels v0.12.2 (https://github.com/statsmodels/statsmodels), RDKit v4.3.0 668 

(https://github.com/rdkit/rdkit), and Colab (https://research.google.com/colaboratory). TM-align 669 
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v20190822 (https://zhanglab.dcmb.med.umich.edu/TM-align/) was used for computing TM-670 

scores. Structure visualizations were created in Pymol v2.55.5 671 

(https://github.com/schrodinger/pymol-open-source). 672 

 673 

 674 

Data availability 675 

All scientific datasets used to create training and evaluation inputs are freely available from 676 

public sources. Structures from the PDB were used for training and as templates 677 

(https://files.wwpdb.org/pub/pdb/data/assemblies/mmCIF/; for sequence clusters see 678 

https://cdn.rcsb.org/resources/sequence/clusters/clusters-by-entity-40.txt; for sequence data see 679 

https://files.wwpdb.org/pub/pdb/derived_data/). 680 

Training used a version of the PDB downloaded 12 January 2023, while template search used a 681 

version downloaded 28 September 2022. We also used the Chemical Components Dictionary 682 

downloaded on 19 October 2023 (https://www.wwpdb.org/data/ccd). 683 

We show experimental structures from the PDB with accession numbers 7PZB52,53, 7PNM54,55, 684 

7TQL56,57, 7AU258,59, 7U8C60,61, 7URD62,63, 7WUX64,65, 7QIE66,67, 7T8268,69, 7CTM70,71, 685 

8CVP44,72, 8D7U44,73, 7F6074,75, 8BTI76,77, 7KZ978,79, 7XFA80,81, 7PEU82,83, 7SDW84,85, 686 

7TNZ86,87, 7R6R 88,89, 7USR90,91, and 7Z1K.92,93 687 

 688 

We also used the following publicly available databases for training or evaluation. Detailed 689 

usage is described in Supplementary Methods 2.2 and Supplementary Methods 2.5.2. 690 

UniRef90 v.2020_01 (https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/release-691 

2020_01/uniref/), 692 

UniRef90 v.2020_03 (https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/release-693 

2020_03/uniref/), 694 

UniRef90 v.2022_05 695 

https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2022_05/uniref/), 696 

Uniclust30 v.2018_08 697 

(https://wwwuser.gwdg.de/~compbiol/uniclust/2018_08/), 698 

Uniclust30 v.2021_03 699 
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Extended Data Figure Captions 829 

 830 
Extended Data Figure 1 | Disordered region prediction. a, Example prediction for a disordered protein from 831 
AlphaFoldMultimer v2.3, AlphaFold 3, and AlphaFold 3 trained without the disordered protein PDB cross 832 
distillation set. Protein is DP02376 from the CAID 2 (Critical Assessment of protein Intrinsic Disorder prediction) 833 
set. Predictions coloured by pLDDT (orange: pLDDT<=50 ,yellow: 50<pLDDT<=70, light blue: 70<pLDDT<=90, 834 
and dark blue: 90<=pLDDT<100). b, Predictions of disorder across residues in proteins in the CAID 2 set, which 835 
are also low homology to the AF3 training set. Prediction methods include RASA (relative accessible surface area) 836 
and pLDDT (N=151 proteins; 46,093 residues). 837 
 838 
Extended Data Figure 2 | Accuracy across training. Training curves for initial training and fine tuning showing 839 
LDDT (local distance difference test) on our evaluation set as a function of optimizer steps. One optimizer step uses 840 
a mini batch of 256 trunk samples and during initial training 256 * 48 = 12,288 diffusion samples. For fine tuning 841 
the number of diffusion samples is reduced to 256 * 32 = 8,192. The scatter plot shows the raw data points and the 842 
lines show the smoothed performance using a median filter with a kernel width of 9 data points. The dashed lines 843 
mark the points where the smoothed performance passes 90% and 97% of the initial training maximum for the first 844 
time. 845 
 846 
Extended Data Figure 3 | AlphaFold 3 predictions of PoseBusters examples for which Vina and Gold were 847 
inaccurate. Predicted protein chains are shown in blue, predicted ligands in orange, and ground truth in grey. a, 848 
Human Notum bound to inhibitor ARUK3004556 (PDB ID 8BTI, ligand RMSD: 0.65 Å). b, Pseudomonas sp. 849 
PDC86 Aapf bound to HEHEAA (PDB ID 7KZ9, ligand RMSD: 1.3 Å). c, Human Galectin-3 carbohydrate-850 
recognition domain in complex with compound 22 (PDB ID 7XFA, ligand RMSD: 0.44 Å). 851 
 852 
Extended Data Figure 4 | PoseBusters analysis. a, Comparison of AlphaFold 3 and baseline method protein-853 
ligand binding success on the PoseBusters Version 1 benchmark set (V1, August 2023 release). Methods classified 854 
by the extent of ground truth information used to make predictions. Note all methods that use pocket residue 855 
information except for UMol and AF3 also use ground truth holo protein structures. b, PoseBusters Version 2 (V2, 856 
November 2023 release) comparison between the leading docking method Vina and AF3 2019 (two-sided Fisher 857 

exact test, N = 308 targets, p = 2.3 * 10−8). c, PoseBusters V2 results of AF3 2019 on targets with low, moderate, 858 

and high protein sequence homology (integer ranges indicate maximum sequence identity with proteins in the 859 
training set). d, PoseBusters V2 results of AF3 2019 with ligands split by those characterised as “common natural” 860 
ligands and others. “Common natural” ligands are defined as those which occur greater than 100 times in the PDB 861 
and which are not non-natural (by visual inspection). A full list may be found in Supplementary Table 15. Dark bar 862 
indicates RMSD < 2 Å and passing PoseBusters validity checks (PB-valid). e, PoseBusters V2 structural accuracy 863 
and validity. Dark bar indicates RMSD < 2 Å and passing PoseBusters validity checks (PB-valid). Light hashed bar 864 
indicates RMSD < 2 Å but not PB valid. f, PoseBusters V2 detailed validity check comparison. Error bars indicate 865 
exact binomial distribution 95% confidence intervals. N=427 targets for RoseTTAFold All-Atom and 428 targets for 866 
all others in Version 1; 308 targets in Version 2. 867 
 868 
Extended Data Figure 5 | Nucleic acid prediction accuracy and confidences. a, CASP15 RNA prediction 869 
accuracy from AIChemy_RNA (the top AI-based submission), RoseTTAFold2NA (the AI-based method capable of 870 
predicting proteinRNA complexes), and AlphaFold 3. Ten of the 13 targets are available in the PDB or via the 871 
CASP15 website for evaluation. Predictions are downloaded from the CASP website for external models. b, 872 
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Accuracy on structures containing low homology RNA-only or DNA-only complexes from the recent PDB 873 
evaluation set. Comparison between AlphaFold 3 and RoseTTAFold2NA (RF2NA) (RNA: N=29 structures, paired 874 

Wilcoxon signed-rank test, p=1.6 * 10−7; DNA: N=63 structures, paired two-sided Wilcoxon signed-rank test, p=5.2 875 

* 10−12). Note RF2NA was only trained and evaluated on duplexes (chains forming at least 10 hydrogen bonds), but 876 

some DNA structures in this set may not be duplexes. Box, centerline, and whiskers boundaries are at (25%, 75%) 877 
intervals, median, and (5%, 95%) intervals. c Predicted structure of a mycobacteriophage immunity repressor 878 
protein bound to double stranded DNA (PDB ID 7R6R), coloured by pLDDT (left; orange: 0-50, yellow: 50-70, 879 
cyan 70-90, and blue 90-100) and chain id (right). Note the disordered N-terminus not entirely shown. d, Predicted 880 
aligned error (PAE) per token-pair for the prediction in c with rows and columns labelled by chain id and green 881 
gradient indicating PAE. 882 
 883 
Extended Data Figure 6 | Analysis and examples for modified proteins and nucleic acids. a, Accuracy on 884 
structures 885 
containing common phosphorylation residues (SEP, TPO, PTR, NEP, HIP) from the recent PDB evaluation set. 886 
Comparison between AlphaFold 3 with phosphorylation modelled, and AlphaFold 3 without modelling 887 

phosphorylation (N=76 clusters, paired two-sided Wilcoxon signed-rank test, p=1.6 * 10−4). Note, to predict a 888 

structure without modelling phosphorylation, we predict the parent (standard) residue in place of the modification. 889 
AlphaFold 3 generally achieves better backbone accuracy when modelling phosphorylation. Error bars indicate 890 
exact binomial distribution 95% confidence intervals. b, SPOC domain of human SHARP in complex with 891 
phosphorylated RNA polymerase II C-terminal domain (PDB ID 7Z1K), predictions coloured by pLDDT (orange: 892 
0-50, yellow: 50-70, cyan 70-90, and blue 90-100). Left: Phosphorylation modelled (mean pocket-aligned RMSDCα 893 
2.104 Å). Right: Without modelling phosphorylation (mean pocketaligned RMSDCα 10.261 Å). When excluding 894 
phosphorylation, AlphaFold 3 provides lower pLDDT confidence on the phosphopeptide. c, Structure of parkin 895 
bound to two phospho-ubiquitin molecules (PDB ID 7US1), predictions similarly coloured by pLDDT. Left: 896 
Phosphorylation modelled (mean pocket-aligned RMSDCα 0.424 Å). Right: Without modelling phosphorylation 897 
(mean pocket-aligned RMSDCα 9.706 Å). When excluding phosphorylation, AlphaFold 3 provides lower pLDDT 898 
confidence on the interface residues of the incorrectly predicted ubiquitin. d, Example structures with modified 899 
nucleic acids. Left: Guanosine monophosphate in RNA (PDB ID 7TNZ, mean pocket-aligned modified residue 900 
RMSD 0.840 Å). Right: Methylated DNA cytosines (PDB ID 7SDW, mean pocket-aligned modified residue RMSD 901 
0.502 Å). Welabel residues of the predicted structure for reference. Ground truth structure in grey; predicted protein 902 
in blue, predicted RNA in purple, predicted DNA in magenta, predicted ions in orange, with predicted modifications 903 
highlighted via spheres 904 
 905 
Extended Data Figure 7 | Model accuracy with MSA size and number of seeds. a, Effect of MSA depth on 906 
protein prediction accuracy. Accuracy is given as single chain LDDT score and MSA depth is computed by counting 907 
the number of non-gap residues for each position in the MSA using the Neff weighting scheme and taking the median 908 
across residues (see Methods for details on Neff). MSA used for AF-M 2.3 differs slightly from AF3; the data uses 909 
the AF3 MSA depth for both to make the comparison clearer. The analysis uses every protein chain in the low 910 
homology Recent PDB set, restricted to chains in complexes with fewer than 20 protein chains and fewer than 2,560 911 
tokens (see Methods for details on Recent PDB set and comparisons to AF-M 2.3). The curves are obtained through 912 
Gaussian kernel average smoothing (window size is 0.2 units in log10(Neff)); the shaded area is the 95% confidence 913 
interval estimated using bootstrap of 10,000 samples. b,  Increase in ranked accuracy with number of seeds for 914 
different molecule types. Predictions are ranked by confidence, and only the most confident per interface is scored. 915 
Evaluated on the low homology recent PDB set, filtered to less than 1,536 tokens. Number of clusters evaluated: 916 
dna-intra=386, protein-intra=875, rnaintra=78, protein-dna=307, protein-rna=102, protein-protein 917 
(antibody=False)=697, protein-protein (antibody=True)=58. Confidence intervals are 95% bootstraps over 1,000 918 
samples. 919 
 920 
Extended Data Figure 8 | Relationship between confidence and accuracy for protein interactions with ions, 921 
bonded ligands and bonded glycans. Accuracy is given as the percentage of interface clusters under various 922 
pocket-aligned RMSD thresholds, as a function of the chain pair ipTM of the interface. The ions group includes both 923 
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metals and nonmetals. N values report the number of clusters in each band. For a similar analysis on general ligand-924 
protein interfaces, see Figure 4 of main text. 925 
 926 
Extended Data Figure 9 |Correlation of DockQ and iLDDT for protein-protein interfaces. One data point per 927 
cluster, 4,182 clusters shown. Line of best fit with a Huber regressor with epsilon 1. DockQ categories correct 928 
(>0.23), and very high accuracy (>0.8) correspond to iLDDTs of 23.6 and 77.6 respectively 929 
 930 
Extended Data Table 1 | Prediction accuracy across biomolecular complexes. AlphaFold 3 Performance on 931 
PoseBusters V1 (August 2023 release), PoseBusters V2 (November 6th 2023 release), and our Recent PDB 932 
evaluation set. For ligands and nucleic acids N indicates number of structures; for covalent modifications and 933 
proteins N indicates number of clusters. 934 
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Extended Data Fig. 1
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Extended Data Fig. 3
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Extended Data Fig. 5ACCELE
RATED ARTIC

LE
 PREVIEW



Extended Data Fig. 6ACCELE
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Extended Data Fig. 7
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Extended Data Fig. 8
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Extended Data Fig. 9
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