Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nano-achiral complex composites for extreme polarization optics

Abstract

Composites from 2D nanomaterials show uniquely high electrical, thermal and mechanical properties1,2. Pairing their robustness with polarization rotation is needed for hyperspectral optics in extreme conditions3,4. However, the rigid nanoplatelets have randomized achiral shapes, which scramble the circular polarization of photons with comparable wavelengths. Here we show that multilayer nanocomposites from 2D nanomaterials with complex textured surfaces strongly and controllably rotate light polarization, despite being nano-achiral and partially disordered. The intense circular dichroism (CD) in nanocomposite films originates from the diagonal patterns of wrinkles, grooves or ridges, leading to an angular offset between axes of linear birefringence (LB) and linear dichroism (LD). Stratification of the layer-by-layer (LBL) assembled nanocomposites affords precise engineering of the polarization-active materials from imprecise nanoplatelets with an optical asymmetry g-factor of 1.0, exceeding those of typical nanomaterials by about 500 times. High thermal resilience of the composite optics enables operating temperature as high as 250 °C and imaging of hot emitters in the near-infrared (NIR) part of the spectrum. Combining LBL engineered nanocomposites with achiral dyes results in anisotropic factors for circularly polarized emission approaching the theoretical limit. The generality of the observed phenomena is demonstrated by nanocomposite polarizers from molybdenum sulfide (MoS2), MXene and graphene oxide (GO) and by two manufacturing methods. A large family of LBL optical nanocomponents can be computationally designed and additively engineered for ruggedized optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanocomposites from 2D nanomaterials prepared by M1; uniform, tunable LH and RH polarization rotation.
Fig. 2: Nanocomposites from 2D nanomaterials prepared by M2; real-time-reconfigurable polarization rotation.
Fig. 3: Generation and modulation of strong CPCE.
Fig. 4: Polarization imaging in the NIR range using thermally resilient composites.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available in the article and its supplementary information files. Source data are provided with this paper.

Code availability

The codes used for chirality index calculations are available from https://github.com/aslozada/kanon and https://github.com/colombarifm/OPD_chirality_index.

References

  1. VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Nepal, D. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Toyoshima, M. et al. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space. Opt. Express 17, 22333–22340 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ott, M. N. et al. Space flight requirements for fiber optic components: qualification testing and lessons learned. Proc. SPIE 6193, 619309 (2006).

    Article  Google Scholar 

  5. Dupeyroux, J., Serres, J. R. & Viollet, S. AntBot: a six-legged walking robot able to home like desert ants in outdoor environments. Sci. Robot. 4, eaau0307 (2019).

    Article  PubMed  Google Scholar 

  6. Guo, X. et al. Full-color holographic display and encryption with full-polarization degree of freedom. Adv. Mater. 34, 2103192 (2022).

    Article  CAS  Google Scholar 

  7. Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photonics 14, 102–108 (2020).

    Article  ADS  CAS  Google Scholar 

  8. Khoo, I.-C. Liquid Crystals 3rd edn (Wiley, 2022).

  9. Kawamoto, H. The history of liquid-crystal displays. Proc. IEEE 90, 460–500 (2002).

    Article  CAS  Google Scholar 

  10. Probst, P. T. et al. Mechano-tunable chiral metasurfaces via colloidal assembly. Nat. Mater. 20, 1024–1028 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Han, H. et al. Multiscale hierarchical structures from a nanocluster mesophase. Nat. Mater. 21, 518–525 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Giese, M., Blusch, L. K., Khan, M. K. & MacLachlan, M. J. Functional materials from cellulose-derived liquid-crystal templates. Angew. Chem. Int. Ed. 54, 2888–2910 (2015).

  13. Hu, H. et al. Nanoscale Bouligand multilayers: giant circular dichroism of helical assemblies of plasmonic 1D nano-objects. ACS Nano 15, 13653–13661 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Lv, J. et al. Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity. Angew. Chem. Int. Ed. 56, 5055–5060 (2017).

    Article  CAS  Google Scholar 

  15. Mao, X. & Kotov, N. Complexity, disorder, and functionality of nanoscale materials. MRS Bull. 49, 352–364 (2024).

    Article  Google Scholar 

  16. Laufer, G., Kirkland, C., Cain, A. A. & Grunlan, J. C. Clay–chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl. Mater. Interfaces 4, 1643–1649 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Magrini, T. et al. Transparent and tough bulk composites inspired by nacre. Nat. Commun. 10, 2794 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Suzuki, N. et al. Chiral graphene quantum dots. ACS Nano 10, 1744–1755 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Kurtina, D. A. et al. Induction of chirality in atomically thin ZnSe and CdSe nanoplatelets: strengthening of circular dichroism via different coordination of cysteine-based ligands on an ultimate thin semiconductor core. Materials 16, 1073 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, Y. et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. Nat. Mater. 15, 461–468 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Mark, A. G., Gibbs, J. G., Lee, T. C. & Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Lu, J. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 371, 1368–1374 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhang, D., Shah, D., Boltasseva, A. & Gogotsi, Y. MXenes for photonics. ACS Photonics 9, 1108–1116 (2022).

    Article  CAS  Google Scholar 

  26. Liu, R. & Li, W. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 3, 2609–2617 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar, P. et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature 615, 418–424 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Buda, A. B. & Mislow, K. A Hausdorff chirality measure. J. Am. Chem. Soc. 114, 6006–6012 (1992).

    Article  CAS  Google Scholar 

  29. Osipov, M. A., Pickup, B. T. & Dunmur, D. A. A new twist to molecular chirality: intrinsic chirality indices. Mol. Phys. 84, 1193–1206 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Kim, J.-Y. et al. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 141, 11739–11744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, S. et al. Chiral assemblies of pinwheel superlattices on substrates. Nature 612, 259–265 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Purcell-Milton, F. et al. Induction of chirality in two-dimensional nanomaterials: chiral 2D MoS2 nanostructures. ACS Nano 12, 954–964 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, H., He, H., Jiang, X., Xia, Z. & Wei, W. Preparation and characterization of chiral transition-metal dichalcogenide quantum dots and their enantioselective catalysis. ACS Appl. Mater. Interfaces 10, 30680–30688 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Salij, A., Goldsmith, R. H. & Tempelaar, R. Theory of apparent circular dichroism reveals the origin of inverted and noninverted chiroptical response under sample flipping. J. Am. Chem. Soc. 143, 21519–21531 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Albano, G., Pescitelli, G. & Di Bari, L. Chiroptical properties in thin films of π-conjugated systems. Chem. Rev. 120, 10145–10243 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Yao, Y. et al. Extracting pure circular dichroism from hierarchically structured CdS magic cluster films. ACS Nano 16, 20457–20469 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Ermolaev, G. A. et al. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 854 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Papadopoulos, N. et al. Large birefringence and linear dichroism in TiS3 nanosheets. Nanoscale 10, 12424–12429 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Tarjányi, N., Turek, I. & Martincek, I. Effect of mechanical stress on optical properties of polydimethylsiloxane II – birefringence. Opt. Mater. 37, 798–803 (2014).

    Article  ADS  Google Scholar 

  40. Aftenieva, O., Schnepf, M., Mehlhorn, B. & König, T. A. F. Tunable circular dichroism by photoluminescent moiré gratings. Adv. Opt. Mater. 9, 2001280 (2021).

    Article  CAS  Google Scholar 

  41. Xu, L. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 601, 366–373 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. González-Rubio, G. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472–1477 (2020).

    Article  ADS  PubMed  Google Scholar 

  43. Xiong, R. et al. Integration of optical surface structures with chiral nanocellulose for enhanced chiroptical properties. Adv. Mater. 32, 1905600 (2020).

    Article  CAS  Google Scholar 

  44. Wu, W., Battie, Y., Lemaire, V., Decher, G. & Pauly, M. Structure-dependent chiroptical properties of twisted multilayered silver nanowire assemblies. Nano Lett. 21, 8298–8303 (2021).

    Article  ADS  PubMed  Google Scholar 

  45. Hubley, A. et al. Chiral perovskite nanoplatelets exhibiting circularly polarized luminescence through ligand optimization. Adv. Opt. Mater. 10, 2200394 (2022).

    Article  CAS  Google Scholar 

  46. Liu, J. et al. What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission. Chem. Sci. 3, 2737–2747 (2012).

    Article  CAS  Google Scholar 

  47. Jiang, S. & Kotov, N. A. Circular polarized light emission in chiral inorganic nanomaterials. Adv. Mater. 35, 2108431 (2023).

    Article  CAS  Google Scholar 

  48. Mukthar, N. F. M., Schley, N. D. & Ung, G. Strong circularly polarized luminescence at 1550 nm from enantiopure molecular erbium complexes. J. Am. Chem. Soc. 144, 6148–6153 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Wu, Y., Li, M., Zheng, Z., Yu, Z.-Q. & Zhu, W.-H. Liquid crystal assembly for ultra-dissymmetric circularly polarized luminescence and beyond. J. Am. Chem. Soc. 145, 12951–12966 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Dierking, I. Chiral liquid crystals: structures, phases, effects. Symmetry 6, 444–472 (2014).

    Article  ADS  Google Scholar 

  51. He, H. et al. Cholesteric-superhelix-enabled reconfigurable circularly polarized luminescence from uniaxially aligned upconversion nanorod films. Laser Photonics Rev. 16, 2200115 (2022).

    Article  ADS  CAS  Google Scholar 

  52. Neshev, D. N. & Miroshnichenko, A. E. Enabling smart vision with metasurfaces. Nat. Photonics 17, 26–35 (2023).

    Article  ADS  CAS  Google Scholar 

  53. Kim, W. et al. Thermally-curable nanocomposite printing for the scalable manufacturing of dielectric metasurfaces. Microsyst. Nanoeng. 8, 73 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blell, R. et al. Generating in-plane orientational order in multilayer films prepared by spray-assisted layer-by-layer assembly. ACS Nano 11, 84–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. He, H. et al. Mueller matrix polarimetry–an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Light. Technol. 37, 2534–2548 (2019).

    Article  ADS  CAS  Google Scholar 

  56. Arteaga, O. & Kahr, B. Mueller matrix polarimetry of bianisotropic materials. J. Opt. Soc. Am. B 36, F72–F83 (2019).

    Article  CAS  Google Scholar 

  57. Arteaga Barriel, O. Mueller Matrix Polarimetry of Anisotropic Chiral Media. Thesis, Univ. Barcelona (2010).

  58. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the Vannevar Bush DoD Fellowship to N.A.K. titled ‘Engineered Chiral Ceramics’ ONR N000141812876. This work was also supported by the ‘Center of Complex Particle Systems (COMPASS)’ (Grant No. NSF 2243104) and in part by the Office of Naval Research (MURI N00014-20-1-2479), ONR COVID-19 Newton Award ‘Pathways to Complexity with ‘Imperfect’ Nanoparticles’ HQ00342010033, AFOSR FA9550-20-1-0265, Graph Theory Description of Network Material. A.F.d.M. is indebted to CNPq and FAPESP (grant 2013/07296-2) for their financial support. We are grateful for the HPC resources provided by the SDumont supercomputer at the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil, http://sdumont.lncc.br). A.J., B.S., R.V. and D.N. are grateful for support from the Materials and Manufacturing Directorate and Air Force Office of Scientific Research of the Air Force Research Laboratory. Michigan Center for Materials Characterization (MC)2 is acknowledged for instrument support. Early discovery of amino acid decoration on MoS2 by M. Zhou is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J. Lu and N.A.K. designed the experiments and analysed the data. J. Lu fabricated the composites. W.W. prepared the Ag film, ran the mechanical testing and contributed to property discussions. J. Lu, K.W. and W.W. ran the AFM imaging and studied the structure of composites. A.J. and R.V. prepared the MoS2 nanoplatelets. B.S. and D.N. synthesized pristine Ti3C2Tx nanoplatelets. F.C. and A.F.d.M. performed the density functional theory and molecular dynamics simulations and chirality index calculations. X.Z. and J. Lahann performed the measurement and data analysis for the refractive index of Ti3C2Tx composites, which was used by J. Lu on finite-difference time-domain simulations. W.C. assisted J. Lu with MMP measurement and contributed to property discussions. J. Lu, W.W., F.C., A.F.d.M., D.N., R.V. and N.A.K. contributed to the writing of the paper, with feedback from all authors. N.A.K. conceived and supervised the project.

Corresponding authors

Correspondence to Richard A. Vaia, André Farias de Moura, Dhriti Nepal or Nicholas A. Kotov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Pengfei Duan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video 1

Distribution of electrostatic potentials of L-Cys-capped MoS2 nanoplatelets under different excitation wavelengths.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Wu, W., Colombari, F.M. et al. Nano-achiral complex composites for extreme polarization optics. Nature (2024). https://doi.org/10.1038/s41586-024-07455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07455-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing