Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Possible shift in controls of the tropical Pacific surface warming pattern

Abstract

Changes in the sea surface temperature (SST) pattern in the tropical Pacific modulate radiative feedbacks to greenhouse gas forcing, the pace of global warming and regional climate impacts. Therefore, elucidating the drivers of the pattern is critically important for reducing uncertainties in future projections. However, the causes of observed changes over recent decades, an enhancement of the zonal SST contrast coupled with a strengthening of the Walker circulation, are still debated. Here we focus on the role of external forcing and review existing mechanisms of the forced response categorized as either an energy perspective that adopts global and hemispheric energy budget constraints or a dynamical perspective that examines the atmosphere–ocean coupled processes. We then discuss their collective and relative contributions to the past and future SST pattern changes and propose a narrative that reconciles them. Although definitive evidence is not yet available, our assessment suggests that the zonal SST contrast has been dominated by strengthening mechanisms in the past, but will shift towards being dominated by weakening mechanisms in the future. Finally, we present opportunities to resolve the model–observations discrepancy regarding the recent trends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed changes in the Pacific SST pattern and the Walker circulation.
Fig. 2: Framing associated with the tropical Pacific surface warming pattern.
Fig. 3: Inter-model relationship between the Walker circulation change and temperature-related metrics.
Fig. 4: Schematic illustration of possible forced mechanisms for the tropical Pacific changes in the zonal SST contrast and associated trade winds.

Similar content being viewed by others

References

  1. IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  2. Coats, S. & Karnauskas, K. Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017).

    Article  ADS  Google Scholar 

  3. McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

    Article  ADS  Google Scholar 

  4. Rugenstein, M. et al. Connecting pattern problem and hot model problem. Geophys. Res. Lett. 50, e2023GL105488 (2023).

    Article  ADS  Google Scholar 

  5. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).

    Article  Google Scholar 

  6. Watanabe, M., Dufresne, J.-L., Kosaka, Y., Mauritsen, T. & Tatebe, H. Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Clim. Change 11, 33–37 (2021).

    Article  ADS  Google Scholar 

  7. Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).

    Article  ADS  Google Scholar 

  8. Sobel, A. H. et al. Near-term tropical cyclone risk and coupled Earth system model biases. Proc. Natl Acad. Sci. USA 120, e2209631120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andrews, T. et al. Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys. Res. Lett. 45, 8490–8499 (2018).

    Article  ADS  Google Scholar 

  10. Ceppi, P. & Gregory, J. M. Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proc. Natl Acad. Sci. USA 114, 13126–13131 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Zhou, C., Zelinka, M. & Klein, S. Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci. 9, 871–874 (2016).

    Article  CAS  ADS  Google Scholar 

  12. Dong, Y., Proistosescu, C., Armour, K. C. & Battisti, D. S. Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green’s function approach: the preeminence of the western Pacific. J. Clim. 32, 5471–5491 (2019).

    Article  ADS  Google Scholar 

  13. Stevens, B., Sherwood, S. C., Bony, S. & Webb, M. J. Prospects for narrowing bounds on Earth’s equilibrium climate sensitivity. Earth’s Future 4, 512–522 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  14. Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020). This study carried out a community-based assessment of the equilibrium climate sensitivity, in which the pattern effect on climate feedbacks is thoroughly discussed.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).

  16. Zhou, C., Zelinka, M. D., Dessler, A. E. & Wang, M. Greater committed warming after accounting for the pattern effect. Nat. Clim. Change 11, 132–136 (2021).

    Article  CAS  ADS  Google Scholar 

  17. Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: implications for projections. J. Clim. 28, 20–35 (2015).

    Article  ADS  Google Scholar 

  18. Capotondi, A. et al. Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Env. 4, 754–769 (2023).

    Article  Google Scholar 

  19. Chung, E. S., Timmermann, A., Soden, B. J., Ha, K.-J. & John, V. O. Reconciling opposing Walker circulation trends in observations and model projections. Nat. Clim. Change 9, 405–412 (2019).

    Article  ADS  Google Scholar 

  20. Olonscheck, D., Rugenstein, M. & Marotzke, J. Broad consistency between observed and simulated trends in sea surface temperature patterns. Geophys. Res. Lett. 47, e2019GL086773 (2020).

    Article  ADS  Google Scholar 

  21. Wills, R., Dong, Y., Proistosecu, C., Armour, K. & Battisti, D. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022). This study systematically compares the past trends in the zonal SST gradient and the Walker circulation between observations and large-ensemble historical simulations by CMIP5 and CMIP6 climate models.

    Article  ADS  Google Scholar 

  22. Lee, S. et al. On the future zonal contrasts of equatorial Pacific climate: perspectives from observations, simulations, and theories. npj Clim. Atmos. Sci. 5, 82 (2022). This is a comprehensive review article on the cause of recent tropical Pacific SST pattern change based on observations, model simulations and theory.

    Article  ADS  Google Scholar 

  23. Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    Article  ADS  Google Scholar 

  24. Heede, U., Fedorov, A. & Burls, N. A stronger versus weaker Walker: understanding model differences in fast and slow tropical Pacific responses to global warming. Clim. Dyn. 57, 2505–2522 (2021).

    Article  Google Scholar 

  25. Gregory, J. M. et al. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31, L03205 (2004).

    Article  ADS  Google Scholar 

  26. Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 1, 360–364 (2011).

    Article  ADS  Google Scholar 

  27. Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I. & Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Change 3, 649–653 (2013).

    Article  ADS  Google Scholar 

  28. Drijfhout, S. S. et al. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett. 41, 7868–7874 (2014).

    Article  ADS  Google Scholar 

  29. Armour, K. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nat. Clim. Change 7, 331–335 (2017).

    Article  ADS  Google Scholar 

  30. Hedemann, C., Mauritsen, T., Jungclaus, J. & Marotzke, J. The subtle origins of surface-warming hiatuses. Nat. Clim. Change 7, 336–339 (2017).

    Article  ADS  Google Scholar 

  31. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006). This study provides the theoretical argument constraining global mass flux change under global warming using the atmospheric hydrological budget.

    Article  ADS  Google Scholar 

  32. Li, R. L., Studholme, J. H., Fedorov, A. V. & Storelvmo, T. Precipitation efficiency constraint on climate change. Nat. Clim. Change 12, 642–648 (2022).

    Article  CAS  ADS  Google Scholar 

  33. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4434 (2007).

    Article  ADS  Google Scholar 

  34. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).

    Article  CAS  ADS  Google Scholar 

  35. Chadwick, R., Boutle, I. & Martin, G. Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J. Clim. 26, 3803–3822 (2013).

    Article  ADS  Google Scholar 

  36. Vecchi, G. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Merlis, T. M. & Schneider, T. Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Clim. 24, 4757–4768 (2011).

    Article  ADS  Google Scholar 

  38. Sandeep, S. et al. Pacific Walker circulation variability in coupled and uncoupled climate models. Clim. Dyn. 43, 103–117 (2014).

    Article  Google Scholar 

  39. Shrestha, S. & Soden, B. J. Anthropogenic weakening of the atmospheric circulation during the satellite era. Geophys. Res. Lett. 50, e2023GL104784 (2023).

    Article  ADS  Google Scholar 

  40. Watanabe, M., Iwakiri, T., Dong, Y. & Kang, S. M. Two competing drivers of the recent Walker circulation trend. Geophys. Res. Lett. 50, e2023GL105332 (2023).

    Article  ADS  Google Scholar 

  41. Chou, C. & Neelin, J. D. Mechanisms of global warming impacts on regional tropical precipitation. J. Clim. 17, 2688–2701 (2004).

    Article  ADS  Google Scholar 

  42. Wills, R. C., Levine, X. J. & Schneider, T. Local energetic constraints on Walker circulation strength. J. Atmos. Sci. 74, 1907–1922 (2017).

    Article  ADS  Google Scholar 

  43. Duffy, M. L. & O’Gorman, P. A. Intermodel spread in Walker circulation responses linked to spread in moist stability and radiation responses. J. Geophys. Res. 128, e2022JD037382 (2023).

    Article  ADS  Google Scholar 

  44. Fan, C. S. & Dommenget, D. The weakening of the tropical circulation is caused by the lifting of the tropopause height. Clim. Dyn. https://doi.org/10.1007/s00382-023-06909-1 (2023).

    Article  Google Scholar 

  45. Kang, S. M., Shin, Y., Kim, H., Xie, S.-P. & Hu, S. Disentangling the mechanisms of equatorial Pacific climate change. Sci. Adv. 9, eadf5059 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeevanjee, N. Three rules for the decrease of tropical convection with global warming. J. Adv. Model. Earth Sys. 14, e2022MS003285 (2022).

    Article  ADS  Google Scholar 

  47. Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Clim. 8, 2181–2199 (1995). This study is a pioneering work that explored the climate response to an abrupt CO2 quadrupling and proposed differential evaporative damping as a mechanism that weakens the equatorial Pacific zonal SST gradient.

    Article  ADS  Google Scholar 

  48. Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article  ADS  Google Scholar 

  49. Heede, U. K., Fedorov, A. V. & Burls, N. J. Time scales and mechanisms for the tropical Pacific response to global warming: a tug of war between the ocean thermostat and weaker Walker. J. Clim. 33, 6101–6118 (2020).

    Article  ADS  Google Scholar 

  50. Fu, M. & Fedorov, A. The role of Bjerknes and shortwave feedbacks in the tropical Pacific SST response to global warming. Geophys. Res. Lett. 50, e2023GL105061 (2023).

    Article  ADS  Google Scholar 

  51. Kang, S. M. et al. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

    Article  ADS  Google Scholar 

  52. Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Kang, S. M. Extratropical influence on the tropical rainfall distribution. Curr. Clim. Change Rep. 6, 24–36 (2020).

    Article  Google Scholar 

  54. Kang, S. M. et al. Walker circulation response to extratropical radiative forcing. Sci. Adv. 6, eabd3021 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  55. Hsiao, W. et al. The role of clouds in shaping tropical Pacific response pattern to extratropical thermal forcing. Geophys. Res. Lett. 49, e2022GL098023 (2022).

    Article  ADS  Google Scholar 

  56. Tseng, H.-Y. et al. Fast and slow responses of the tropical Pacific to radiative forcing in northern high latitudes. J. Clim. 36, 5337–5349 (2023).

    Article  ADS  Google Scholar 

  57. Kang, S. M., Park, K., Hwang, Y.-T. & Hsiao, W.-T. Contrasting tropical climate response pattern to localized thermal forcing over different ocean basins. Geophys. Res. Lett. 45, 12544–12552 (2018).

    Article  ADS  Google Scholar 

  58. Hu, S. & Fedorov, A. V. Cross-equatorial winds control El Niño diversity and change. Nat. Clim. Change 8, 798–802 (2018).

    Article  ADS  Google Scholar 

  59. Donohoe, A. et al. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the Last Glacial Maximum. J. Clim. 26, 3597–3618 (2013).

    Article  ADS  Google Scholar 

  60. Kang, S. M. et al. Global impacts of recent Southern Ocean cooling. Proc. Natl Acad. Sci. USA 120, e2300881120 (2023). This study demonstrates the recent Southern Ocean cooling impact on the eastern tropical Pacific SST cooling using pacemaker experiments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dong, Y. et al. Two-way teleconnections between the Southern Ocean and the tropical Pacific via a dynamic feedback. J. Clim. 35, 2667–2682 (2022).

    Article  ADS  Google Scholar 

  62. Li, X. et al. Tropical teleconnection impacts on Antarctic climate changes. Nat. Rev. Earth Environ. 2, 680–698 (2021).

    Article  ADS  Google Scholar 

  63. Kim, H., Kang, S. M., Kay, J. E. & Xie, S.-P. Subtropical clouds key to Southern Ocean teleconnections to the tropical Pacific. Proc. Nat. Acad. Sci. USA 34, e2200514119 (2022).

    Article  Google Scholar 

  64. Allen, R. J., Evan, A. T. & Booth, B. B. B. Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Clim. 28, 8219–8246 (2015).

    Article  ADS  Google Scholar 

  65. Hwang, Y. ‐T., Frierson, D. M. W. & Kang, S. M. Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett. 40, 2845–2850 (2013).

    Article  ADS  Google Scholar 

  66. Hwang, Y.-T., Xie, S.-P., Chen, P.-J., Tseng, H.-Y. & Deser, C. Contribution of anthropogenic aerosols to persistent La Niña-like conditions in the early 21st century. Proc. Nat. Acad. Sci. USA 121, e2315124121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smith, D. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Change 6, 936–940 (2016).

    Article  CAS  ADS  Google Scholar 

  68. Takahashi, C. & Watanabe, M. Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Clim. Change 6, 768–772 (2016).

    Article  ADS  Google Scholar 

  69. Heede, U. K. & Fedorov, A. V. Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nat. Clim. Change 11, 696–703 (2021).

    Article  CAS  ADS  Google Scholar 

  70. Kang, S. M. et al. Zonal mean and shift modes of historical climate response to evolving aerosol distribution. Sci. Bull. 66, 2405–2411 (2021).

    Article  CAS  Google Scholar 

  71. Deser, C. et al. Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: a new CESM1 large ensemble community resource. J. Clim. 33, 7835–7858 (2020).

    Article  ADS  Google Scholar 

  72. Diao, C., Xu, Y. & Xie, S.-P. Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980–2020): separating the role of zonally asymmetric forcings. Atmos. Chem. Phys. 21, 18499–18518 (2021).

    Article  CAS  ADS  Google Scholar 

  73. Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).

    Article  ADS  Google Scholar 

  74. Jin, F.-F. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño Southern Oscillation. Science 274, 76–78 (1996).

    Article  CAS  ADS  Google Scholar 

  75. Xie, S.-P. & Philander, S. G. H. A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A, 340–350 (1994).

    Article  ADS  Google Scholar 

  76. Planton, Y. Y. et al. Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Am. Meteor. Soc. 102, E193–E217 (2021).

    Article  Google Scholar 

  77. Clement, A., Seager, R., Cane, M. & Zebiak, S. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996). This study proposed the ocean thermostat mechanism that increases the equatorial Pacific zonal SST gradient to uniform thermal forcing using a simple coupled model.

    Article  ADS  Google Scholar 

  78. Sun, D.-Z. & Liu, Z. Dynamic ocean–atmosphere coupling: a thermostat for the tropics. Science 272, 1148–1150 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  79. Luo, Y., Lu, J., Liu, F. & Garuba, O. The role of ocean dynamical thermostat in delaying the El Niño–like response over the equatorial Pacific to climate warming. J. Clim. 30, 2811–2827 (2017).

    Article  ADS  Google Scholar 

  80. Zeller, M., McGregor, S., van Sebille, E., Capotondi, A. & Spence, P. Subtropical-tropical pathways of spiciness anomalies and their impact on equatorial Pacific temperature. Clim. Dyn. 56, 1131–1144 (2021).

    Article  Google Scholar 

  81. Liu, Z. Y. The role of ocean in the response of tropical climatology to global warming: the west–east SST contrast. J. Clim. 11, 864–875 (1998).

    Article  ADS  Google Scholar 

  82. Kleeman, R., McCreary, J. P. & Klinger, B. A. A mechanism for generation ENSO decadal variability. Geophys. Res. Lett. 26, 2038–2049 (1999).

    Article  Google Scholar 

  83. Gu, D. & Philander, S. G. H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 17, 553–564 (1997).

    Google Scholar 

  84. Imada, Y., Tatebe, H., Watanabe, M., Ishii, M. & Kimoto, M. South Pacific influence on the termination of El Niño in 2014. Sci. Rep. 6, 30341 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Kilpatrick, T., Schneider, N. & Di Lorenzo, E. Generation of low-frequency spiciness variability in the thermocline. J. Phys. Oceanogr. 41, 365–377 (2011).

    Article  ADS  Google Scholar 

  86. England, M. R., Polvani, L. M., Sun, L. & Deser, C. Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci. 13, 275–281 (2020).

    Article  CAS  ADS  Google Scholar 

  87. McPhaden, M. & Zhang, D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415, 603–608 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  88. Thomas, M. D. & Fedorov, A. V. The eastern subtropical Pacific origin of the equatorial cold bias in climate models: a Lagrangian perspective. J. Clim. 30, 5885–5900 (2017).

    Article  ADS  Google Scholar 

  89. Wang, D. & Cane, M. Pacific shallow meridional overturning circulation in a warming climate. J. Clim. 24, 6424–6439 (2011).

    Article  ADS  Google Scholar 

  90. Graffino, G., Farneti, R. & Kucharski, F. Low-frequency variability of the Pacific subtropical cells as reproduced by coupled models and ocean reanalyses. Clim. Dyn. 56, 3231–3254 (2021).

    Article  Google Scholar 

  91. Stellema, A., Sen Gupta, A., Taschetto, A. S. & Feng, M. Pacific equatorial undercurrent: mean state, sources, and future changes across models. Front. Clim. 4, 933091 (2022).

    Article  Google Scholar 

  92. Stuecker, M. F. et al. Strong remote control of future equatorial warming by off-equatorial forcing. Nat. Clim. Change 10, 124–129 (2020).

    Article  ADS  Google Scholar 

  93. Cai, W. et al. Pantropical climate interactions. Science 363, eeav4236 (2019). This is a comprehensive review paper on the tropical basin coupling and its role in the tropical Pacific climate variability.

    Article  Google Scholar 

  94. McGregor, S., Stuecker, M. F., Kajtar, J. B., England, M. H. & Collins, M. Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Clim. Change 8, 493–498 (2018).

    Article  ADS  Google Scholar 

  95. Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change 6, 275–279 (2016).

    Article  ADS  Google Scholar 

  96. Kajtar, J. B., Santoso, A., McGregor, S., England, M. H. & Baillie, Z. Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias. Clim. Dyn. 50, 1471–1484 (2017).

    Article  Google Scholar 

  97. Ferster, B. S., Fedorov, A. V., Guilyardi, E. & Mignot, J. The effect of Indian Ocean temperature on the Pacific trade winds and ENSO. Geophys. Res. Lett. 50, e2023GL103230 (2023).

    Article  ADS  Google Scholar 

  98. Dhame, S., Taschetto, A. S., Santoso, A. & Meissner, K. J. Indian Ocean warming modulates global atmospheric circulation trends. Clim. Dyn. 55, 2053–2073 (2020).

    Article  Google Scholar 

  99. Luo, J.-J., Sasaki, W. & Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  100. Fedorov, A. V. & Philander, S. G. Is El Niño changing? Science 288, 1997–2002 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  101. Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteor. Soc. 96, 921–938 (2015).

    Article  ADS  Google Scholar 

  102. Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018). This paper reviews the physical processes involved in El Niño–Southern Oscillation and provides a synopsis of understanding of the ENSO complexity.

    Article  CAS  PubMed  ADS  Google Scholar 

  103. Jin, F.-F., An, S.-I., Timmermann, A. & Zhao, J. Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett. 30, 1120 (2003).

    Article  ADS  Google Scholar 

  104. Sun, D.-Z. & Zhang, T. A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett. 33, L07710 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  105. Kohyama, T. & Hartmann, D. L. Nonlinear ENSO warming suppression (NEWS). J. Clim. 30, 4227–4251 (2017).

    Article  ADS  Google Scholar 

  106. Hayashi, M., Jin, F.-F. & Stuecker, M. F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 11, 4230 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  107. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  ADS  Google Scholar 

  108. Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502, 541–545 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  109. Huang, P. & Xie, S. P. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci. 8, 922–926 (2015).

    Article  CAS  ADS  Google Scholar 

  110. Yun, K. S. et al. Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Commun. Earth Environ. 2, 43 (2021).

    Article  ADS  Google Scholar 

  111. Watanabe, M., Kamae, Y. & Kimoto, M. Robust increase of the equatorial Pacific rainfall and its variability in a warmed climate. Geophys. Res. Lett. 41, 3227–3232 (2014).

    Article  ADS  Google Scholar 

  112. Kim, H., Timmermann, A., Lee, S.-S. & Schloesser, F. Rainfall and salinity effects on future Pacific climate change. Earth’s Future 11, e2022EF003457 (2023).

    Article  ADS  Google Scholar 

  113. Ham, Y. G. et al. Anthropogenic fingerprints in daily precipitation revealed by deep learning. Nature 622, 301–307 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  114. Heede, U. K. & Fedorov, A. V. Colder eastern equatorial Pacific and stronger Walker circulation in the early 21st century: separating the forced response to global warming from natural variability. Geophys. Res. Lett. 50, e2022GL101020 (2023).

    Article  ADS  Google Scholar 

  115. Hartmann, D. The Antarctic ozone hole and the pattern effect on climate sensitivity. Proc. Natl Acad. Soc. USA 119, e2207889119 (2022).

    Article  CAS  Google Scholar 

  116. Zhang, L., Delworth, T. L., Cooke, W. & Yang, X. Natural variability of Southern Ocean convection as a driver of observed climate trends. Nat. Clim. Change 9, 59–65 (2019).

    Article  ADS  Google Scholar 

  117. Dong, Y., Pauling, A. G., Sadai, S. & Armour, K. C. Antarctic ice-sheet meltwater reduces transient warming and climate sensitivity through the sea-surface temperature pattern effect. Geophys. Res. Lett. 49, e2022GL101249 (2022).

    Article  ADS  Google Scholar 

  118. Zhang, Y. G., Pagani, M. & Liu, Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science 344, 84–87 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  119. Fedorov, A., Burls, N. J., Lawrence, K. T. & Peterson, L. C. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci. 8, 975–980 (2015).

    Article  CAS  ADS  Google Scholar 

  120. Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto-Bliesner, B. L. Pliocene warmth consistent with greenhouse gas forcing. Geophys. Res. Lett. 46, 9136–9144 (2019).

    Article  ADS  Google Scholar 

  121. Wycech, J. B., Gill, E., Rajagopalan, B., Marchitto, T. M. Jr & Molnar, P. H. Multiproxy reduced-dimension reconstruction of Pliocene equatorial Pacific sea surface temperatures. Paleoceanogr. Paleoclim. 35, e2019PA003685 (2020).

    Article  ADS  Google Scholar 

  122. Zhong, S., Ying, J. & Collins, M. Sources of uncertainty in the time of emergence of tropical Pacific climate change signal: role of internal variability. J. Clim. 36, 2535–2549 (2023).

    Article  ADS  Google Scholar 

  123. Falster, G., Konecky, B., Coats, S. & Stevenson, S. Forced changes in the Pacific Walker circulation over the past millennium. Nature 622, 93–100 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  124. Yim, B. Y., Yeh, S.-W., Song, H.-J., Dommenget, D. & Sohn, B. J. Land-sea thermal contrast determines the trend of Walker circulation simulated in atmospheric general circulation models. Geophys. Res. Lett. 44, 5854–586 (2017).

    Article  ADS  Google Scholar 

  125. Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  126. Schloesser, F., Friedrich, T., Timmermann, A., DeConto, R. M. & Polland, D. Antarctic iceberg impacts on future Southern Hemisphere climate. Nat. Clim. Change 9, 672–677 (2019).

    Article  ADS  Google Scholar 

  127. Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  128. Tian, Y., Hu, S. & Deser, C. Critical role of biomass burning aerosols in enhanced historical Indian Ocean warming. Nat. Commun. 14, 3508 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Yamaguchi, R. et al. Persistent ocean anomalies as a response to Northern Hemisphere heating induced by biomass burning variability. J. Clim. 36, 8225–8241 (2023).

    Article  ADS  Google Scholar 

  130. Ying, J., Huang, P., Lian, T. & Tan, H. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models. Clim. Dyn. 52, 1805–1818 (2019).

    Article  Google Scholar 

  131. Bayr, T. et al. Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Clim. Dyn. 53, 155–172 (2019).

    Article  Google Scholar 

  132. Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).

    Article  ADS  Google Scholar 

  133. Yeager, S. G. et al. Reduced Southern Ocean warming enhances global skill and signal-to-noise in an eddy-resolving decadal prediction system. npj Clim. Atmos. Sci. 6, 107 (2023).

    Article  ADS  Google Scholar 

  134. Slingo, J. et al. Ambitious partnership needed for reliable climate prediction. Nat. Clim. Change 12, 499–503 (2022).

    Article  ADS  Google Scholar 

  135. Huang, P., Xie, S.-P., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 6, 357–361 (2013).

    Article  CAS  ADS  Google Scholar 

  136. Andrews, T., Gregory, J. M. & Webb, M. J. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Clim. 28, 1630–1648 (2015).

    Article  ADS  Google Scholar 

  137. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  138. Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (Cambridge Univ. Press, 2021).

  139. Lindzen, R. S. & Nigam, S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 44, 2418–2436 (1987).

    Article  ADS  Google Scholar 

  140. Karnauskas, K. B. A simple coupled model of the wind–evaporation–SST feedback with a role for stability. J. Clim. 35, 2149–2160 (2022).

    Article  ADS  Google Scholar 

  141. Yang, L., Xie, S.-P., Shen, S. S. P., Liu, J. & Hwang, Y. Low cloud–SST feedback over the subtropical northeast Pacific and the remote effect on ENSO variability. J. Clim. 36, 441–452 (2022).

    Article  ADS  Google Scholar 

  142. Timmermann, A., McGregor, S. & Jin, F.-F. Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J. Clim. 23, 4429–4437 (2010).

    Article  ADS  Google Scholar 

  143. Chalmers, J., Kay, J. E., Middlemas, E. A., Maroon, E. A. & DiNezio, P. Does disabling cloud radiative feedbacks change spatial patterns of surface greenhouse warming and cooling? J. Clim. 35, 1787–1807 (2022).

    Article  ADS  Google Scholar 

  144. Hartmann, D. L., Moy, L. A. & Fu, Q. Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 14, 4495–4511 (2001).

    Article  ADS  Google Scholar 

  145. Yoshimori, M., Lambert, F. H., Webb, M. J. & Andrews, T. Fixed anvil temperature feedback - positive, zero or negative? J. Clim. 33, 2719–2739 (2020).

    Article  ADS  Google Scholar 

  146. Clement, A. C., Burgman, R. & Norris, J. R. Observational and model evidence for positive low-level cloud feedback. Science 325, 460–464 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  147. Myers, T. A. et al. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Clim. Change 11, 501–507 (2021).

    Article  ADS  Google Scholar 

  148. Ying, J., Huang, P. & Huang, R. Evaluating the formation mechanisms of the equatorial Pacific SST warming pattern in CMIP5 models. Adv. Atmos. Sci. 33, 433–441 (2016).

    Article  Google Scholar 

  149. Erfani, E. & Burls, N. J. The strength of low-cloud feedbacks and tropical climate: a CESM sensitivity study. J. Clim. 32, 2497–2516 (2019).

    Article  ADS  Google Scholar 

  150. Park, C., Kang, S. M., Stuecker, M. F. & Jin, F.-F. Distinct surface warming response over the western and eastern equatorial Pacific to radiative forcing. Geophys. Res. Lett. 49, e2021GL095829 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F.-F. Jin, A. Fedorov and M. Yoshimori for comments on this work; R. Wills, J. Ying, Y. Dong, N. Burls, A. Capotondi and other members of the CLIVAR-CFMIP working group on the tropical Pacific SST warming patterns (TROPICS) for suggestions and discussion; and H. Kim and D. Lee for help producing Fig. 3. M.W. was supported by the Program for Advanced Studies of Climate Change Projection (SENTAN) Grant-in-Aid JPMXD0722680395 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and JSPS Kakenhi grant number 24H00261, Japan. M.C. was supported by Natural Environment Research Council NE/W005239/1. Y.-T.H. was supported by the Ministry of Science and Technology of Taiwan (NSTC 112-2111-M-002-016-MY4). S.M. was supported by the Australian Research Council (grant numbers FT160100162 and DP200102329) and the Australian Government’s National Environmental Science Program (NESP2). M.F.S. was supported by NSF grant AGS-2141728. This is IPRC publication 1619 and SOEST contribution 11795. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

M.W. and S.M.K. initially designed and structured the paper. M.C., Y.-T.H., S.M. and M.F.S. equally contributed to the writing with S.M.K. and M.W.

Corresponding authors

Correspondence to Masahiro Watanabe or Sarah M. Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Alexey Fedorov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, M., Kang, S.M., Collins, M. et al. Possible shift in controls of the tropical Pacific surface warming pattern. Nature 630, 315–324 (2024). https://doi.org/10.1038/s41586-024-07452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07452-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing