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Ab initio calculations have an essential role in our fundamental understanding of 
quantum many-body systems across many subfields, from strongly correlated 
fermions1–3 to quantum chemistry4–6 and from atomic and molecular systems7–9 to 
nuclear physics10–14. One of the primary challenges is to perform accurate calculations 
for systems where the interactions may be complicated and difficult for the chosen 
computational method to handle. Here we address the problem by introducing an 
approach called wavefunction matching. Wavefunction matching transforms the 
interaction between particles so that the wavefunctions up to some finite range  
match that of an easily computable interaction. This allows for calculations of systems 
that would otherwise be impossible owing to problems such as Monte Carlo sign 
cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light 
nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity 
chiral effective field theory interactions17,18 and find good agreement with empirical 
data. These results are accompanied by insights on the nuclear interactions that may 
help to resolve long-standing challenges in accurately reproducing nuclear binding 
energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.

Quantum Monte Carlo simulations are a powerful and efficient ab initio 
method for describing quantum many-body systems using stochastic 
processes1,9,15,16,21–23. If the Monte Carlo amplitudes are positive, then 
the computational effort grows only as a low power of the number 
of particles. For many problems of interest, a simple Hamiltonian HS 
can be found that is easily computable using Monte Carlo methods 
and describes the energies and other observable properties of the 
many-body system in fair agreement with empirical data24–27. However, 
realistic high-fidelity Hamiltonians usually suffer from severe sign 
problems with positive and negative contributions cancelling each 
other so that Monte Carlo calculations become impractical. Here we 
solve the problem using an approach called wavefunction matching. 
While keeping the observable physics unchanged, wavefunction match-
ing creates a new high-fidelity Hamiltonian H′ such that the two-body 
wavefunctions up to some finite range match that of a simple Hamilto-
nian HS, which is easily computed. This allows for a rapidly converging 
expansion in powers of the difference H′ − HS. Although wavefunction 
matching can be used with any computational scheme, we focus here on 
quantum Monte Carlo simulations where the method presents a practi-
cal strategy for evading sign oscillations in high-fidelity calculations. 

While HS and H′ act on many-body systems, the wavefunction-matching 
process is done at the two-body level only. For the sake of clarity,  
we define HS and H′ as containing only two-body interactions. Later we 
also consider the inclusion of three-body interactions. However, that 
analysis is separate from wavefunction matching.

A unitary transformation U is a linear transformation that maps 
normalized orthogonal states to other normalized orthogonal states. 
Starting from a high-fidelity Hamiltonian H with only two-body interac-
tions, wavefunction matching defines a new Hamiltonian H′ = U†HU, 
where U† is the Hermitian conjugate of U. The unitary transformation 
is performed at the two-body level. In each two-body angular momen-
tum channel, the unitary transformation U is active only when the 
separation distance between two particles is less than some chosen 
distance R. For the calculations presented here, the value R = 3.72 fm is 
used. The dependence on R is extensively discussed in Supplementary 
Information.

Let us write ψ0(r), ψ r′ ( )0  and ψ r( )0
S  for the two-body ground-state 

wavefunctions of H, H′ and the simple Hamiltonian HS, respectively. 
Here r is the distance between the two particles. The transformation 
U is defined such that ψ r′ ( )0  is proportional to ψ r( )0

S  for r < R. The simple 
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Hamiltonian is chosen so that the constant of proportionality is close 
to 1. For r > R, however, U is not active and so ψ r′ ( )0  remains equal to 
ψ0(r). The key point to notice here is that ψ r′ ( )0  and ψ r( )0

S  are numerically 
close to each other for all values of r. This can be seen visually in Fig. 1a 
and is the reason why perturbation theory in powers of H′ − HS con-
verges quickly when starting from low-energy states of HS.

Wavefunction matching will now be applied to ab initio Monte Carlo 
nuclear lattice simulations15,16,25,26,28 using the framework of chiral effec-
tive field theory (χEFT)17,29. For our realistic Hamiltonian H, we use χEFT 
two-nucleon interactions at next-to-next-to-next-to-leading order 
(N3LO) with lattice spacing a = 1.32 fm using a low-energy scheme 
described in Supplementary Information. For our simple Hamiltonian 
HS, we use a χEFT interaction at leading order. Details of the interactions 

can be found in Supplementary Information. In the following, we use 
the term ‘local’ for interactions that do not change the positions of 
particles and ‘non-local’ refers to interactions that do change the rela-
tive positions of particles. The ‘range’ of the interaction refers to the 
separation distance beyond which the interaction between particles 
becomes negligible.

We calculate all quantities up to first order in perturbation theory, 
which corresponds to one power in the difference H′ − HS. As a first test, 
we consider the energy of the deuteron, 2H. The wavefunction-matching 
calculation gives a binding energy of 2.02 MeV, compared with 2.21 MeV 
for the true binding energy of H and 2.22 MeV for the experimentally 
observed value. The residual error of 0.1 MeV per nucleon is due to 
corrections beyond first order in powers of H′ − HS. If one does not use 
wavefunction matching and instead performs the analogous calcula-
tion to first order in H − HS, the result is a much less accurate binding 
energy of 0.68 MeV.

As a second test of wavefunction matching, we calculate the binding 
energies of 3H and 4He. The Tjon band describes the universal correla-
tions between the 3H and 4He binding energies30,31. Provided that there 
are no long-range non-local interactions, any realistic two-nucleon 
interaction produces binding energies that lie on the Tjon band. The 
inclusion of any short-range three-nucleon interaction also preserves 
this universal relation. In Fig. 1, we show wavefunction-matching calcu-
lations using two-nucleon interactions only. At leading order (LO) the 
calculated point falls outside the Tjon band as the Coulomb interaction 
is not included, whereas the next-to-leading order (NLO) and N3LO 
results lie squarely in the middle of the band. We are using a low-energy 
scheme where the two-nucleon interaction is the same at NLO and 
next-to-next-to-leading order (NNLO)32. The empirical point is also 
shown in Fig. 1. The good agreement with the Tjon band suggests a 
residual error of 0.1 MeV per nucleon or less for 3H and 4He. In Supple-
mentary Information, we present numerical evidence that the estimate 
of 0.1 MeV error per nucleon is also valid for light and medium-mass 
nuclei. This can be compared with the substantial deviation from the 
Tjon line if one does not use wavefunction matching and performs 
the analogous calculation to first order in H − HS. Before proceeding 
to larger nuclei and many-body systems, we first comment on the cur-
rent status of ab initio calculations of nuclear structure using χEFT. The 
following analysis is not directly connected to wavefunction matching. 
Instead, it is a separate theoretical framework designed to help push 
beyond the current limitations of ab initio nuclear structure theory.

There has been tremendous progress in the past few years towards 
producing accurate results for nuclear structure across much of the 
nuclear chart using a variety of different computational approaches33–44. 
But there is also ample evidence that the calculations are sensitive to 
the manner in which the short-distance features of the interactions 
are regulated20,45–48, a warning sign that systematic errors are not fully 
under control. Current ab initio calculations have difficulty simultane-
ously maintaining high-fidelity two-nucleon phase shifts and mixing 
angles and describing the saturation energy and density of symmetric 
nuclear matter as well as the binding energies and charge radii of light 
and medium-mass nuclei. Previous ab initio nuclear structure calcula-
tions have either not addressed some of the relevant observables or 
require further improvement in one or more of these areas. We aim to 
identify the problem and point to a viable solution.

The results in refs. 49,50 showed that the range and locality of the 
nuclear interactions have a strong influence on nuclear binding and 
that the α–α interaction is highly sensitive to the range and locality of 
the nucleonic interactions as well as omitted higher-order interactions. 
These same arguments apply to other interactions involving α particles 
and nucleons. In Supplementary Information, we use the formalism of 
cluster effective field theory51–54 for α-particles and nucleons to pro-
vide a simple counting argument for the number of parameters that 
require tuning to reduce unwanted errors. Our strategy is to tune the 
short-distance features of the three-nucleon interactions to achieve 
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Fig. 1 | Wavefunction matching and the Tjon band. a, Pictorial representation 
of wavefunction matching. The simple Hamiltonian HS is an easily computable 
Hamiltonian whereas the high-fidelity Hamiltonian H is not. A unitary 
transformation on the two-nucleon interaction with finite range R is used to 
produce a new Hamiltonian H′ that is close to HS. In each two-body channel, the 
ground-state wavefunction of H′ matches the ground-state wavefunction of H 
for r > R and is proportional to the ground-state wavefunction of HS for r < R.  
b, The Tjon band correlation between the binding energies of 3H (B3) and 4He (B4). 
The grey band is the predicted result from ref. 31. The black open box shows the 
empirical point. The green diamond, blue circle and red square points show the 
results at LO, NLO and N3LO in chiral effective field theory, respectively. The 
open points show the results from the first-order perturbative calculations 
using the Hamiltonian H and the filled points are the results of the first-order 
perturbative calculations using the Hamiltonian H′. The error bars show 
standard deviations.
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this error cancellation. We should emphasize that our calculations are 
full A-body calculations, and cluster effective field theory is only used 
to diagnose sensitivities to short-distance physics.

In χEFT, three-nucleon forces first appear at order NNLO. These 
include terms associated with the exchange of two pions and whose 
coefficients are determined from pion–nucleon scattering. There  
are also two interactions with singular short-distance properties that 
must be regulated and the corresponding couplings fitted to empirical 
data. As shown in Fig. 2a, cD corresponds to the short-range interaction 
of two nucleons linked to a third nucleon through the exchange of  
a pion, and cE corresponds to the short-range interaction of all three 
nucleons. At N3LO, there are additional terms associated with the 
exchange of two pions as well as readjustments of the cD and cE coef-
ficients55–57. Four-nucleon interactions also appear at N3LO but are not 
considered in this work.

We tune the short-distance features of the cD and cE three-nucleon 
interactions to minimize errors in the binding energies of selected 
light and medium-mass nuclei. A total of six additional three-nucleon 
parameters are adjusted, and in Supplementary Information we pre-
sent the details of these parameters along with a detailed description 
of the fitting procedure and the resulting uncertainty. We find that 
with just one parameter, the root-mean-square-deviation (RMSD) for 
the energy per nucleon drops from 1.2 MeV down to 0.4 MeV. With 
the addition of a few additional parameters, the RMSD per nucleon 
drops further to about 0.1 MeV. These results are consistent with the 
hypothesis that the α–α interaction has a key role in nuclear binding and 
that there are several additional cluster interactions that are sensitive 
to short-distance physics.

In Fig. 2b, we present the results for the nuclear binding energies 
using wavefunction matching. We show ground-state and excited-state 
energies of selected nuclei with up to A = 58 nucleons and comparison 
with experimental data. The symbols with a black border indicate nuclei 
with unequal numbers of protons and neutrons. The nuclei used in the 
fit of the three-nucleon interactions are labelled with open squares, 
and the other nuclei are predictions denoted with filled diamonds. The 
one-standard-deviation error bars shown in Fig. 2 represent uncertain-
ties due to Monte Carlo errors, infinite-volume extrapolations and 
infinite projection time extrapolations. As described in Supplemen-
tary Information, we estimate the additional systematic errors due to 
truncation of the expansion in powers of H′ − HS to be approximately 
0.1 MeV per nucleon. However, this source of systematic error can be 

significantly reduced by allowing for variational optimization of the 
Hamiltonian used to prepare the nuclear many-body wavefunction. We 
perform this variational optimization so that the remaining systematic 
error is smaller than the estimated computational error due to other 
sources. In Supplementary Information, we also compute the addi-
tional systematic errors due to uncertainties in the chiral interactions.

In Fig. 3a, we present the results for the charge radii of nuclei with 
up to A = 58 nucleons. No charge radii data were used to fit any inter-
action parameters. The one-standard-deviation point estimate error 
bars shown in Fig. 3 represent computational uncertainties due to 
Monte Carlo errors, infinite-volume extrapolation and infinite-time 
extrapolation. The agreement with empirical results is quite good, with 
an RMSD of about 0.03 fm. An extended analysis for selected nuclei 
that also includes uncertainties from the interactions are presented 
in Supplementary Information. We note that the larger errors for the 
heaviest nuclei are statistical and can be decreased by utilizing greater 
computational resources. The specific terms included in the calcula-
tions of the charge radii are detailed in Supplementary Information.

In Fig. 3b, we present lattice results for the energy per nucleon ver-
sus density for pure neutron matter and symmetric nuclear matter. 
None of the neutron-matter and symmetric nuclear-matter data were 
used to fit any interaction parameters. The density is expressed as  
a fraction of the saturation density for nuclear matter, ρ0 = 0.16 fm−3. 
For the neutron-matter calculations, we consider 14 to 80 neutrons in 
periodic box lengths ranging from 6.58 fm to 13.2 fm. For the symmetric 
nuclear-matter calculations, we use system sizes from 12 to 160 nucle-
ons in a periodic box of length 9.21 fm. The comparisons with several 
other published works are shown and detailed in the figure caption. 
We see that the neutron-matter calculations agree well with previous 
calculations. Within the uncertainties due to finite system size correc-
tions, the symmetric nuclear-matter calculations show saturation at 
an energy and density consistent with the empirical saturation point 
labelled with the black rectangular box. The relative uncertainties due 
to finite system size are at the 10% level for the energy. Additional calcu-
lations with larger systems are needed to reduce the thermodynamic 
extrapolation error further.

The one-standard-deviation point estimate error bars shown rep-
resent computational uncertainties due to Monte Carlo errors and 
infinite projection time extrapolation. These lattice simulations of 
symmetric nuclear matter are qualitatively different to other theo-
retical calculations that assume a homogeneous phase. The lattice 

3 4 6 7 8 9 10 11 12 13 1414 15 16 17 18 20 22 24 28 32 36 40 50 58
A

2

3

4

5

6

7

8

9

B
A
/A

 (M
eV

)

3H
3He

4He

6He

6Li
7Li

8Be

9Be

10B

10Be

11B

12C0+
1

12C0+
2

12C2+
1

13C

14N

14C
15N

16O
17O

18O

20O
22O

24O

18F

20Ne
24Mg

28Si
32S

36Ar
40Ca

50Cr
58Ni

Experiment
N3LO (�t)
(Prediction)

a b

cD cE
π

Fig. 2 | Short-range three-nucleon forces at NNLO and results for nuclear 
binding energies. a, Short-range three-nucleon forces at NNLO. The first is  
the one-pion exchange term cD shown on the left. The other is the purely 
short-range term cE shown on the right. At order N3LO, there are additional 
three-nucleon interactions associated with the exchange of two pions, as well 
as the corrections from the renormalization of the cD and cE terms. b, Results  
for nuclear binding energies (BA) using wavefunction matching. Calculated 

ground-state and excited-state energies of some selected nuclei with up to 
A = 58 at N3LO in χEFT and comparison with experimental data. The symbols 
with a black border indicate nuclei with unequal numbers of protons and 
neutrons. The nuclei used in the fit of the higher-order three-nucleon 
interactions are labelled with open squares and the other nuclei are predictions 
denoted with filled diamonds. The error bars show standard deviations.
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simulations show phase separation and cluster formation, just as in 
the real physical system. Owing to the finite number of nucleons in 
these calculations, some oscillations due to nuclear shell effects can 
be seen in the energy per nucleon.

Another interesting feature of the lattice results is that symmetric 
nuclear matter without three-nucleon forces is underbound rather 
than overbound. This is different from what is found in other cal-
culations using renormalization-group methods58–60. As discussed 
in Supplementary Information, wavefunction matching is very dif-
ferent from renormalization-group transformations. Wavefunction 
matching implements a unitary transformation that has finite range, 
and the process can be viewed as defining a new χEFT two-nucleon 
Hamiltonian H′. The interaction in H′ has a range no larger than that 
of H and HS for the low-energy interactions. Therefore, one does not 
need to reconstruct the many-body forces induced by the unitary 
transformation and can simply treat H′ as the new χEFT two-nucleon 
Hamiltonian. Wavefunction matching has some characteristics similar 
to the unitary correlation operator method (UCOM)61–63. However, the 
unitary transformation in UCOM has properties that are more similar 
to renormalization-group transformations and, therefore, is also quite 
different from wavefunction matching. The induced forces generated 
by wavefunction matching have been investigated in a toy model64. A 
detailed discussion of the theory and applications of wavefunction 
matching and its implementation in continuous space are presented 
in Supplementary Information.

In summary, we have presented an approach for solving quantum 
many-body systems called wavefunction matching. Wavefunction 
matching uses a transformation of the particle interactions to allow 
for calculations of systems that would otherwise be difficult or impos-
sible. We have applied the method to lattice Monte Carlo simulations of 
light nuclei, medium-mass nuclei, neutron matter and nuclear matter 
using high-fidelity chiral interactions and found good agreement with 
empirical data. Judging from the accuracy of the predictions, we have 
been successful in cancelling systematic errors in nuclear structure 
calculations by tuning the short-distance features of the three-nucleon 

interactions. These developments may help resolve long-standing 
challenges in ab initio nuclear structure theory.

Although we have focused on Monte Carlo simulations for nuclear 
physics here, wavefunction matching can be used with any computa-
tional method and applied to any quantum many-body system. This 
also includes quantum computing algorithms where wavefunction 
matching can be used to reduce the number of quantum gates required. 
All that is needed is a simple Hamiltonian HS that produces fair agree-
ment with empirical data for the many-body system of interest and 
is easily computable using the method of choice. Further details on 
the implementation and theory of wavefunction matching are given 
in Supplementary Information.
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