Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A self-healing multispectral transparent adhesive peptide glass


Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties1. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure2. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability3. However, engineering a glassy material without compromising its properties is challenging4,5,6. Here we report the discovery of a supramolecular amorphous glass formed by the spontaneous self-organization of the short aromatic tripeptide YYY initiated by non-covalent cross-linking with structural water7,8. This system uniquely combines often contradictory sets of properties; it is highly rigid yet can undergo complete self-healing at room temperature. Moreover, the supramolecular glass is an extremely strong adhesive yet it is transparent in a wide spectral range from visible to mid-infrared. This exceptional set of characteristics is observed in a simple bioorganic peptide glass composed of natural amino acids, presenting a multi-functional material that could be highly advantageous for various applications in science and engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peptide glass assembly and its optical properties.
Fig. 2: Peptide glass assembly mechanism through non-covalent cross-linking of water molecules resulting in adhesive properties towards hydrophilic surfaces.
Fig. 3: Dynamic modulation of the mechanical properties in response to hydration level.
Fig. 4: Cracking and self-healing of the peptide glass.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the Article and the Supplementary Information.


  1. Zanotto, E. D. & Mauro, J. C. The glassy state of matter: its definition and ultimate fate. J. Non Cryst. Solids 471, 490–495 (2017).

    Article  ADS  CAS  Google Scholar 

  2. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Shelby, J. E. Introduction to Glass Science and Technology (Royal Society of Chemistry, 2005).

  4. Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wang, H. et al. Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proc. Natl Acad. Sci. USA 117, 11299–11305 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang, Z. et al. Highly compressible glass-like supramolecular polymer networks. Nat. Mater. 21, 103–109 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhang, Q. et al. Formation of a supramolecular polymeric adhesive via water-participant hydrogen bond formation. J. Am. Chem. Soc. 141, 8058–8063 (2020).

    Article  Google Scholar 

  8. Dong, S. et al. Structural water as an essential comonomer in supramolecular polymerization. Sci. Adv. 3, eaao0900 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barrat, J. L., Baschnagel, J. & Lyulin, A. Molecular dynamics simulations of glassy polymers. Soft Matter 6, 3430–3446 (2010).

    Article  ADS  CAS  Google Scholar 

  10. Colmenero, J. Are polymers standard glass-forming systems? the role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers. J. Phys. Condens. Matter 27, 103101 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Balkenende, D. W. R., Monnier, C. A., Fiore, G. L. & Weder, C. Optically responsive supramolecular polymer glasses. Nat. Commun. 7, 1–9 (2016).

    Article  Google Scholar 

  12. Lebel, O. & Soldera, A. in Advanced Materials (eds van de Ven, T. & Soldera, A.) 239–260 (De Gruyter, 2019).

  13. Wuest, J. D. & Lebel, O. Anarchy in the solid state: structural dependence on glass-forming ability in triazine-based molecular glasses. Tetrahedron 65, 7393–7402 (2009).

    Article  CAS  Google Scholar 

  14. Chaplin, M. Do we underestimate the importance of water in cell biology? Nat. Rev. 7, 861–866 (2006).

    Article  CAS  Google Scholar 

  15. Hazra, P., Chakrabarty, D. & Sarkar, N. Intramolecular charge transfer and solvation dynamics of Coumarin 152 in aerosol-OT, water-solubilizing reverse micelles, and polar organic solvent solubilizing reverse micelles. Langmuir 18, 7872–7879 (2002).

    Article  CAS  Google Scholar 

  16. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  CAS  Google Scholar 

  17. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Tao, K., Makam, P., Aizen, R. & Gazit, E. Self-assembling peptide semiconductors. Science 358, eaam9756 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gilead, S. & Gazit, E. Self-organization of short peptide fragments: from amyloid fibrils to nanoscale supramolecular assemblies. Supramol. Chem. 17, 87–92 (2005).

    Article  CAS  Google Scholar 

  20. Zhao, X. & Zhang, S. Designer self-assembling peptide materials. Macromol. Biosci. 7, 13–22 (2007).

    Article  PubMed  Google Scholar 

  21. Cui, H., Webber, M. J. & Stupp, S. I. Self‐assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept. Sci. 94, 1–18 (2010).

    Article  CAS  Google Scholar 

  22. Fleming, S. & Ulijn, R. V. Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev. 43, 8150–8177 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Knowles, T. P. J., Oppenheim, T. W., Buell, A. K., Chirgadze, D. Y. & Welland, M. E. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat. Nanotechnol. 5, 3–6 (2010).

    Article  Google Scholar 

  24. Chung, C. W. et al. Label-free characterization of amyloids and alpha-synuclein polymorphs by exploiting their intrinsic fluorescence property. Anal. Chem. 13, 5367–5374 (2022).

    Article  Google Scholar 

  25. Adler-Abramovich, L. et al. Bioinspired flexible and tough layered peptide crystals. Adv. Mater. 30, 1–6 (2018).

    Google Scholar 

  26. Adler-Abramovich, L. & Gazit, E. The physical properties of supramolecular peptide assemblies: From building block association to technological applications. Chem. Soc. Rev. 43, 6881–6893 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Lampel, A., Ulijn, R. V. & Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Ulijn, R. V. & Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E. & Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Yan, X. & Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877–1890 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Arnon, Z. A. et al. On-off transition and ultrafast decay of amino acid luminescence driven by modulation of supramolecular packing. iScience 24, 102695 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ji, W. et al. Rigid tightly packed amino acid crystals as functional supramolecular materials. ACS Nano 13, 14477–14485 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Zhdanova, N. G. et al. Tyrosine fluorescence probing of the surfactant-induced conformational changes of albumin. Photochem. Photobiol. Sci. 14, 897–908 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Jang, H.-S. et al. Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat. Commun. 5, 3665 (2014).

    Article  ADS  PubMed  Google Scholar 

  35. Brillante, B. A. et al. Characterization of phase purity in organic semiconductors by lattice-phonon confocal Raman mapping: application to pentacene. Adv. Mater. 17, 2549–2553 (2005).

    Article  CAS  Google Scholar 

  36. Xing, R., Yuan, C., Fan, W., Ren, X. & Yan, X. Biomolecular glass with amino acid and peptide nanoarchitectonics. Sci. Adv. 9, eadd8105 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yokota, H., Sakata, H., Nishibori, M. & Kinosita, K. Ellipsometric study of polished glass surfaces. Surf. Sci. 16, 265–274 (1969).

    Article  ADS  Google Scholar 

  38. Jeener, J., Meier, B. H., Bachmann, P. & Ernst, R. R. Investigation of exchange processes by two‐dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553 (1979).

    Article  ADS  CAS  Google Scholar 

  39. Hibbert, F. & Emsley, J. Hydrogen bonding and chemical reactivity. Adv. Phys. Org. Chem. 26, 255–379 (1990).

    CAS  Google Scholar 

  40. Davis, J. H., Jeffrey, K. R., Bloom, M., Valic, M. I. & Higgs, T. P. Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 42, 390–394 (1976).

    Article  ADS  CAS  Google Scholar 

  41. Larsen, F. H. in Annual Reports on NMR Spectroscopy Vol. 71 (ed. Webb, G. A.) 103–137 (Elsevier, 2010).

  42. Hernández, B., Coïc, Y., Pflüger, F., Kruglik, G. & Ghomi, M. All characteristic Raman markers of tyrosine and tyrosinate originate from phenol ring fundamental vibrations. J. Raman Spectrosc. 47, 210–220 (2016).

    Article  ADS  Google Scholar 

  43. Ihli, J. et al. Mechanical adaptation of brachiopod shells via hydration-induced structural changes. Nat. Commun. 12, 5383 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ge, H. et al. Fracture behavior of colloidal polymer particles in fast-frozen suspensions viewed by cryo-SEM. Macromolecules 39, 5531–5539 (2006).

    Article  ADS  CAS  Google Scholar 

  45. Desloir, M., Benoit, C., Bendaoud, A., Alcouffe, P. & Carrot, C. Plasticization of poly(vinyl butyral) by water: glass transition temperature and mechanical properties. J. Appl. Polym. Sci. 136, 47230 (2019).

    Article  Google Scholar 

  46. Kilburn, D. et al. Water in glassy carbohydrates: opening it up at the nanolevel. Phys. Chem. 33, 12436–12441 (2004).

    Google Scholar 

  47. Flores, A., Ania, F. & Baltá-Calleja, F. J. From the glassy state to ordered polymer structures: A microhardness study. Polymer 50, 729–746 (2009).

    Article  CAS  Google Scholar 

  48. Wang, Q., Chen, H., Wang, Y. & Sun, J. Thermal shock effect on the glass thermal stress response and crack propagation. Procedia Eng. 62, 717–724 (2013).

    Article  CAS  Google Scholar 

  49. Frankberg, E. J. et al. Highly ductile amorphous oxide at room temperature and high strain rate. Science 366, 864–869 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

    Article  PubMed  Google Scholar 

Download references


This work was supported by the Air Force Office of Scientific Research under award no. FA8655-21-1-7004 (E.G.), the Marian Gertner Institute for Medical Nanosystems Research (G.F.-Z. and Z.A.A.), the Clore Scholars Program, the Zuckerman Israeli-Postdoc Program and the Human Frontier Science Program (HFSP LT000158/2021-C) (Z.A.A.). T.V. thanks Tel Aviv University for the post-doctoral fellowship. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US Air Force. We thank T. Brosh and L. Adler-Abramovich for assisting with the mechanical measurements, B. Ratzker for helping in the design of the measurements, D. Rachmiel for the assistance with drilling holes in the glass slides and D. Zaguri for providing us with the weights. We also thank R. Beck and G. R. Koren for their assistance in SAXS measurements. We thank S. S. B. Shabtay and Y. Cohen for their assistance in the NMR measurements, J. Jopp for the infrared measurements and D. Levy for the PXRD measurements. Last, we thank all members of the Gazit group for their helpful discussions.

Author information

Authors and Affiliations



G.F.-Z., Z.A.A. and E.G. conceptualized the project. G.F.-Z., Z.A.A., T.V. and E.G. conceived and designed the methodology. G.F.-Z., M.S. and O.M. performed the characterization of the mechanical properties. A.G., O.S.L. and T.V. performed the NMR experiments and analysed them. B.A.P. and A.W. performed cryo-SEM measurements. G.F.-Z., G.Z. and R.A. performed the transparency measurements. E.G., T.E., Z.A.A. and L.M. designed and performed the optical lens experiment. S.R.-L. and S.G. contributed to the interpretation of the data and text editing. S.S. synthesized and characterized the peptide derivative. M.J.P. performed the Raman experiment. D.A.G. and S.K. assisted with the sample preparation. T.E., B.A.P., A.G., M.S. and E.G. provided resources for this project. E.G. supervised the work and performed project administration. G.F.-Z., Z.A.A. and E.G. wrote the Article. All authors discussed the results, provided intellectual input and critical feedback and commented on the Article.

Corresponding author

Correspondence to Ehud Gazit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Olivier Lebel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–17, Supplementary Table 1 and Supplementary Schemes 1 and 2.

Peer Review file

Supplementary Video 1

Successful adhesion of two microscope glass slides held together by a YYY adhesive layer, under a downward load of 5 kg.

Supplementary Video 2

Cracks propagation in a YYY peptide glass under dry conditions.

Supplementary Video 3

Self-healing of a cracked YYY peptide glass under humid conditions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finkelstein-Zuta, G., Arnon, Z.A., Vijayakanth, T. et al. A self-healing multispectral transparent adhesive peptide glass. Nature 630, 368–374 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing