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International differences in the incidence of many cancer types indicate the  
existence of carcinogen exposures that have not yet been identified by conventional 
epidemiology make a substantial contribution to cancer burden1. In clear cell renal  
cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they 
do not explain the geographical variation in its incidence2. Underlying causes can  
be inferred by sequencing the genomes of cancers from populations with different 
incidence rates and detecting differences in patterns of somatic mutations. Here we 
sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. 
The somatic mutation profiles differed between countries. In Romania, Serbia and 
Thailand, mutational signatures characteristic of aristolochic acid compounds were 
present in most cases and but these were rare elsewhere. In Japan, a mutational 
signature of unknown cause was found in more than 70% of cases but in less than 2% 
elsewhere. A further mutational signature of unknown cause was ubiquitous but 
exhibited higher mutation loads in countries with higher incidence rates of kidney 
cancer. Known signatures of tobacco smoking correlated with tobacco consumption, 
but no signature was associated with obesity or hypertension, suggesting that 
non-mutagenic mechanisms of action underlie these risk factors. The results of this 
study indicate the existence of multiple, geographically variable, mutagenic exposures 
that potentially affect tens of millions of people and illustrate the opportunities for 
new insights into cancer causation through large-scale global cancer genomics.

The incidence rates of most adult cancers vary substantially between 
geographical regions and many such differences are not explained by 
known risk factors1. Together with unexplained trends in incidence over 
time, this indicates the probable presence of unknown environmental 
or lifestyle causes for many cancer types1. Traditional epidemiologi-
cal studies have identified many important lifestyle, environmental 
and infectious risk factors for cancer. However, they have had limited 

success in recent decades, suggesting that alternative study designs 
are required if further risk factors are to be identified.

Characterization of mutational signatures within cancer genomes3 is 
an approach that complements conventional epidemiology for inves-
tigating unknown causes of cancer. Most cancers contain thousands 
of somatic mutations that have occurred over the lifetime of the indi-
vidual. These can be caused by endogenous cellular processes such as 
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imperfect DNA replication and repair, or by exposure to exogenous 
environmental or lifestyle mutagens such as ultraviolet radiation in 
sunlight and compounds in cigarette smoke. Mutational signatures 
are the patterns of somatic mutation imprinted on genomes by indi-
vidual mutational processes. Analysis of thousands of cancer genome 
sequences from most cancer types has established a set of reference 
mutational signatures including 71 single base substitution (SBS) or 
doublet base substitution (DBS) signatures, and 18 small insertion 
and deletion (indel or ID) signatures4. A possible aetiology has been 
suggested for 47 SBS and DBS signatures and 9 indel signatures.

Kidney cancer has particularly high incidence rates in Central and 
Northern Europe, notably in the Czech Republic and Lithuania, and 
has shown increasing incidence in high income countries in recent 
decades2 (Fig. 1). Most kidney cancers are clear cell renal cell carcino-
mas3 (ccRCCs), for which obesity, hypertension and tobacco smoking 
are known risk factors2. However, these account for less than 50% of 
the global ccRCC burden and do not explain geographical or temporal 
incidence trends. Previous ccRCC genome sequencing studies have 
included relatively small numbers of individuals from a small number 
of countries with limited variation in ccRCC incidence5–9 and have not 
comprehensively examined associations between ccRCC risk factors 
and mutational signatures. To detect the activity of unknown carcino-
gens involved in ccRCC development and to investigate the mechanisms 
of action of known risk factors, we generated and analysed epidemio-
logical and whole-genome sequencing data from a large international 
ccRCC dataset10.

A total of 962 cases of ccRCC from 11 countries in 4 continents were 
studied, including from the Czech Republic (also known as Czechia) 
(n = 259), Russia (n = 216), UK (n = 115), Brazil (n = 96), Canada (n = 73), 
Serbia (n = 69), Romania (n = 64), Japan (n = 36), Lithuania (n = 16), 
Poland (n = 13) and Thailand (n = 5) (Fig. 1, Table 1 and Methods). 
These encompass a broad range of ccRCC incidence, from the highest 
global age-standardized rates (ASRs) of Lithuania and Czech Repub-
lic (ASRs of 14.5 and 14.4 per 100,000 respectively) to the relatively 
low rates of Brazil and Thailand11 (ASRs of 4.5 and 1.8 per 100,000 
respectively). Epidemiological questionnaire data were available 
on sex, age at diagnosis and important risk factors, including body 
mass index (BMI), hypertension and tobacco smoking (Table 1). DNA 
from ccRCCs and blood from the same individuals were extracted 

and whole-genome sequenced to average coverage of 54-fold and 
31-fold, respectively.

Somatic mutation burdens in the 962 ccRCC genomes ranged from 
803 to 45,376 (median 5,093) for SBS, 2 to 240 (median 53) for DBS, 
and 10 to 14,770 (median 695) for indels (Supplementary Table 1). The 
average burden of all three mutation types differed between the 11 
countries (P value < 2 × 10−23, P value < 2 × 10−14 and P value < 6 × 10−14, 
for SBSs, DBSs and indels, respectively). In particular, the burden of all 
mutation types was higher in Romania compared with other countries 
(Extended Data Fig. 1). Principal component analysis (PCA) performed 
on the proportions of the six primary SBS mutation classes (C>A, C>G, 
C>T, T>A, T>C and T>G) in each sample identified a distinct cluster of 
mainly Romanian and Serbian cases and a further cluster of mainly 
Japanese cases (Extended Data Fig. 2). The results, therefore, clearly 
demonstrate geographical variation of somatic mutation loads and 
patterns in ccRCC.

To investigate the mutational processes contributing to the geo-
graphical variation in mutation burdens, we extracted mutational 
signatures and estimated the contribution of each signature to each 
ccRCC genome (Supplementary Tables 2–6). Ten signatures with 
strong similarity to a reference signature in the Catalogue of Somatic 
Mutations in Cancer (COSMIC) database were extracted: SBS1, due to 
deamination of 5-methylcytosine12; SBS2 and SBS13, due to cytosine 
deamination by apolipoprotein B mRNA-editing enzyme, catalytic 
polypeptide-like (APOBEC) DNA-editing enzymes12; SBS4, due to 
tobacco smoke mutagens13; SBS5, due to an endogenous mutational 
process in which mutations accumulate with age13; SBS12, of unknown 
cause; SBS18, due to DNA damage by reactive oxygen species13; SBS21 
and SBS44, due to defective DNA mismatch repair13,14; and SBS22, due 
to aristolochic acid exposure15,16.

Five further SBS signatures were identified that were not well 
described by the COSMIC v3.3 catalogue (Fig. 2 and Supplementary 
Table 7). SBS_B, SBS_A and SBS_F were present in most ccRCCs, account-
ing for, on average, around 30%, 20% and 3% of mutations, respectively 
(Fig. 2b). Combined, they closely resemble the previously reported 
SBS40 (0.96 cosine similarity), suggesting that the large number of 
ccRCC whole genomes analysed here provides the power to separate 
the constituent component signatures of SBS40. This hypothesis was 
tested by performing a series of extractions using different conditions 
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Fig. 1 | Eleven participating countries and estimated ASRs of ccRCCs. Incidence of ccRCC for men and women combined (ASR per 100,000). Data from GLOBOCAN 
2020. Markers indicate countries included in this study (number of participants with ccRCC per country).
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and subsets of the data (Supplementary Note) which showed that the 
three extracted signatures were highly reproducible. SBS_B, SBS_A 
and SBS_F were therefore named SBS40a, SBS40b and SBS40c respec-
tively. SBS40 was previously reported frequently, and at high levels, 
in kidney cancer, but also in other cancers, and is of unknown aetiol-
ogy. Similar to the composite SBS40, SBS40a is present in multiple 
cancer types. However, SBS40b and SBS40c are largely restricted 
to ccRCC (Extended Data Fig. 3 and Supplementary Note). The two 
remaining signatures that were not explained were SBS_H and SBS_I, 
both of which had strong support from individual mutational spec-
tra (Supplementary Note). Analysis of all other types of mutational 
signatures, including doublet base substitutions, small insertion and 
deletions, copy number variants and structural variants, is presented 
in Supplementary Note.

The mutation burdens of multiple SBS mutational signatures varied 
between the 11 countries. SBS22 is thought to be caused by aristolochic 
acids, mutagenic derivatives of plants of the Aristolochia genus, which 
are carcinogenic and also cause Balkan endemic nephropathy (BEN), 
a kidney disease that is prevalent in areas adjacent to the Danube in 
southeastern Europe17. SBS22 has previously been found in ccRCC, 
other urothelial tract cancers and hepatocellular carcinomas from 
Romania5,18 and various countries in East and Southeast Asia15,16,19. In this 
study, SBS22 was present in high proportions of ccRCC from Romania 
(45 out of 64 (70%)), Serbia (16 out of 69 (23%)) and Thailand (3 out of 
5 (60%)), often with very high mutation burdens. Of note, given the 
limited number of cases in Thailand, they may not be representative 
of ccRCC in that region. The presence of SBS22 was strongly corre-
lated with that of new signatures SBS_I, DBS_D and ID_C (Extended Data 

Table 1 | Summary of ccRCC risk factors included in this study

Country (ASR per 100,000) Brazil 
(4.5)

Canada 
(10.4)

Czechia 
(14.4)

Japan 
(7.6)

Lithuania 
(14.5)

Poland 
(8.1)

Romania 
(7.7)

Russia 
(10.3)

Serbia 
(7.4)

Thailand 
(1.8)

UK 
(10.3)

Total 
(4.6)

Total number 
of cases

96 73 259 36 16 13 64 216 69 5 115 962

Sex Female 44 22 93 8 9 5 25 98 30 4 42 380

Male 52 51 166 28 7 8 39 118 39 1 73 582

Age at 
diagnosis 
(years)

0–45 15 6 27 3 1 2 6 43 16 0 6 125

45–55 20 17 51 5 0 6 10 44 11 0 22 186

55–65 30 17 77 8 9 1 20 91 27 2 41 323

65–75 24 27 72 13 4 4 20 32 9 2 31 238

>75 7 6 32 7 2 0 8 6 6 1 15 90

Year of 
recruitment

1999–2005 0 0 93 0 0 13 14 18 0 0 0 138

2005–2010 0 0 111 0 0 0 19 70 1 0 31 232

2010–2015 0 9 55 28 0 0 31 116 68 0 41 348

2015–2020 96 64 0 8 16 0 0 12 0 5 43 244

Stage I 28 3 123 24 6 0 33 94 32 0 53 396

II 2 0 42 1 0 6 12 24 4 0 8 99

III 16 23 46 6 5 5 18 65 26 0 38 248

IV 7 10 38 5 2 2 1 33 7 0 16 121

Missing 43 37 10 0 3 0 0 0 0 5 0 98

BMI <20 3 2 5 2 0 2 2 9 8 0 6 39

20–25 21 10 100 25 2 3 17 84 28 3 23 316

25–30 35 24 85 7 6 6 30 40 20 1 45 299

>30 37 37 69 2 8 2 14 83 13 1 41 307

Missing 0 0 0 0 0 0 1 0 0 0 0 1

High blood 
pressure

No 45 28 129 16 5 9 39 125 28 2 58 484

Yes 51 44 130 20 10 4 24 91 41 3 56 474

Missing 0 1 0 0 1 0 1 0 0 0 1 4

Diabetes No 76 55 130 29 9 0 45 186 61 3 95 689

Yes 20 16 36 7 7 0 4 12 8 2 20 132

Missing 0 2 93 0 0 13 15 18 0 0 0 141

Family 
history of 
RCC

No 90 42 165 35 16 0 54 192 67 5 102 726

Yes 5 4 22 1 0 0 1 6 2 0 3 43

Missing 1 27 72 0 0 13 9 18 0 0 10 193

Tobacco 
smoking 
status

Current 23 21 66 9 4 6 11 52 18 1 28 239

Ex 21 30 62 15 3 3 15 27 15 0 44 235

Never 52 22 131 11 9 4 37 137 36 4 43 486

Missing 0 0 0 1 0 0 1 0 0 0 0 2

PFOA 
(ng ml−1)

Mean (s.d.) 0.7 (0.5) 1.6 (1.1) 3.4 (2.1) 1.3 (0.6) 5.4 (4.1) 1.3 (0.9) 1.5 (1.4) 1.3 (0.6) 2.2 (2.2) 3.3 (1.7) 2.2 (1.9)

PFOA, perfluorooctanoic acid; RCC, renal cell carcinoma.
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Figs. 4–6 and Extended Data Table 1), which are therefore also probably 
due to aristolochic acid exposure. SBS_I, similar to SBS22, is composed 
predominantly of T>A mutations. The signature identified previously 
as SBS22 was therefore renamed SBS22a, and the three newly identified 
signatures were named SBS22b, DBS20 and ID23, respectively. The 
mutation burden of SBS22a and SBS22b differed between Serbia and 
Romania, with higher levels being detected in Romania and away from 
recognized BEN zones20 (Fig. 3 and Extended Data Fig. 7c,d). The two 
signatures may be due to different subsets of aristolochic acids and/
or to different metabolites, which induce slightly different mutational 
patterns. Only five ccRCC cases were known to reside within recognized 
BEN zones, suggesting no clear link between the two diseases. Although 

the source of this exposure is uncertain, these results indicate that a 
substantial proportion of the population over a wide geographical 
area of eastern Europe, possibly tens of millions of people, has been 
exposed to aristolochic acid-containing compounds, the public health 
consequences of which are uncertain.

SBS12 was present in 72% of Japanese and 2% of non-Japanese ccRCC 
(P value = 4.7 × 10−78) (Extended Data Fig. 7h). Compared with the muta-
tion burdens imposed by aristolochic acid in ccRCC, SBS12 contributed 
modest mutation loads. SBS12 is composed predominantly of T>C 
substitutions and exhibits strong transcriptional strand bias with more 
T>C mutations on the transcribed strand than on the untranscribed 
strand of protein-coding genes. Transcriptional strand bias is typically 
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Fig. 2 | SBS signature operative in ccRCCs. a, TMB plot showing the frequency 
and number of mutations per megabase for each of the decomposed SBS 
signatures. Data include only samples with more than zero mutations.  
b, Average relative attribution for SBS signatures across countries. Signatures 
that contribute less than 5% on average are grouped in the ‘others’ category, 
except for SBS12 and the aristolochic acid-related signatures SBS22a and 

SBS22b. The ‘<95% confidence’ category accounts for the proportion of 
mutation burden that could not be assigned to any signature with confidence 
level of at least 95%. c, Decomposed signatures, including reference COSMIC 
signatures as well as de novo signatures that are not decomposed into COSMIC 
reference signatures.
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caused by activity of transcription-coupled nucleotide excision repair 
acting on bulky DNA adducts owing to exogenous mutagenic exposures 
such as tobacco smoke chemicals13, ultraviolet light13, aristolochic 
acids15 and aflatoxins21. Assuming that transcription-coupled repair 
of DNA adducts is responsible for the SBS12 strand bias, the adducts 
are probably on adenine. Alternatively, transcriptional strand bias 
can also be caused by transcription-coupled damage, which results 
in an increase of mutations in genic regions compared with intergenic 
regions, however, prior topography analysis of mutational signatures 
has shown that SBS12 does not exhibit such an enrichment22–24. The 
presence of SBS12 was replicated in two further series of whole-genome 
sequenced ccRCCs from Japan, including 14 cases from an independent 
study group who undertook a broad genomic analysis of ccRCC but 
without detailed mutational signature analysis25 and a more recent 
unpublished series of 61 cases from an additional cohort of ccRCC 
sequenced by the same centre as the initial cohort (Supplementary 
Note). SBS12 was present in 12 out of 14 (85%) and 46 out of 61 (75%) 
cases, respectively. SBS12 was previously reported in hepatocellular 
carcinomas4,13 and additional analysis of existing datasets revealed 
strong SBS12 enrichment in hepatocellular carcinomas from Japan 
compared with other countries (P value = 3.8 × 10−15; Supplementary 
Note). These results, therefore, indicate that exposure to an agent that 
contributes SBS12 mutations to kidney and liver cancer is common in 
Japan and rare in the other ten countries included in this study. The 
agent responsible for SBS12 is unknown, although the precedents pro-
vided by other mutational signatures with strong transcriptional strand 
bias suggest that it is probably of exogenous origin22,24. A polymorphism 
in aldehyde dehydrogenase 2 that is known to impair metabolism of 
alcohol to aldehydes and is common in Japan did not associate with 

levels of SBS12, and neither did any other common germline variants 
(Supplementary Note).

SBS40a, SBS40b and SBS40c were present in ccRCCs from all 11 coun-
tries. The country-specific average mutation burdens of SBS40a and 
SBS40b were positively associated with country-specific ASRs of kidney 
cancer incidence (P value = 0.0022 and P value = 5.1 × 10−18, respectively; 
Fig. 4a, Extended Data Fig. 8a and Supplementary Table 8), with the 
highest mutation loads in the Czech Republic and Lithuania. Kidney 
cancer incidence rates also vary between the regions of the Czech 
Republic and SBS40b mutation burdens differed significantly between 
these (P value = 0.011; Fig 4b,c and Supplementary Table 9), with the 
highest attribution in the highest-risk region. SBS40b exhibits modest 
transcriptional strand bias and—assuming that transcription-coupled 
repair of DNA adducts is responsible—the adducts underlying SBS40b 
are probably on pyrimidines. Indel signatures ID5 and ID8, which 
together contributed around 60% of the indel mutation burden on 
average, were also strongly associated with country-specific kidney 
cancer ASR (P value = 1.3 × 10−10 and P value = 7.1 × 10−5, respectively; 
Extended Data Fig. 8b,c). Signatures ID5 and ID8 correlated with each 
other (Spearman’s r = 0.78), as well as with SBS40b (r = 0.79 and r = 0.74, 
respectively) indicating that they probably all constitute products of 
the same underlying mutational process. Thus, the burdens of the full 
complement of mutation types generated by this mutational process 
correlate with age-adjusted kidney cancer incidence rates. The overall 
mutational burden did not, however, associate significantly with kidney 
cancer incidence rates (Extended Data Fig. 9).

To investigate potential mutagenic agents underlying these geo-
graphically variable signatures, we conducted an untargeted metab-
olomics screen of plasma on 901 individuals in the study, from all 
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countries except Japan (Methods). A total of 2,392 metabolite fea-
tures was obtained, including 944 independent peaks (r < 0.85). Three 
features were associated with SBS4 (Supplementary Table 10), with 
two identified as hydroxycotinine (P value = 2.9 × 10−9) and cotinine 
(P value = 1.9 × 10−5), two major metabolites of nicotine26. Eight fea-
tures were associated with SBS40b (Supplementary Table 10). One 
feature was identified as N,N,N-trimethyl-l-alanyl-l-proline betaine 
(TMAP) (P value = 1.2 × 10−5; Supplementary Table 11), increased lev-
els of which correlate strongly with reduced kidney function27. Other 
established measures of kidney function, including cystatin C and cre-
atinine, were correlated with TMAP (P value = 2.5 × 10−30 and 1.7 × 10−69, 
respectively) and also showed evidence of positive association with 
SBS40b (P value = 0.023 and 0.058, respectively). Thus, exposure to 
the mutagenic agent responsible for SBS40b is associated with reduced 

kidney function. No recognized metabolome features were significantly 
associated with any other signatures.

A total of 1,962 ‘driver’ mutations were found in 136 genes including 
VHL, PBRM1, SETD2 and BAP1, the known frequently mutated cancer 
genes in ccRCC9,25 (Fig. 5a, Supplementary Table 12 and Methods). 
The frequencies of mutations in these genes were consistent across 
countries (Fig. 5b). The spectrum of all driver mutations in ccRCC with 
aristolochic acid exposure (Methods) was enriched in T>A mutations 
compared with non-exposed cases (25% versus 13%, P value = 0.0062; 
Fig. 5c,d) with similar enrichment specifically in VHL mutations (30% 
versus 16%; Fig. 5e,f), and in the whole exomes (27% in exposed com-
pared to 12% in unexposed cases). Thus genome-wide aristolochic acid 
mutagenesis has contributed in a proportionate fashion to generation 
of driver mutations in aristolochic acid-exposed ccRCC. The driver 
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against ASR of kidney cancer in each of the 11 countries represented in the 
cohort. Data are mean ± s.e.m. (n = 961 biologically independent samples 
examined over 1 independent experiment). b, Number of mutations attributed 
to signature SBS40b in four regions of Czech Republic against ASR of kidney 

cancer in each region. Data are mean ± s.e.m. (n = 961 biologically independent 
samples examined over 1 independent experiment). a,b, P values are shown for 
the ASR variable in linear regressions across all cases, adjusted for sex and age 
of diagnosis. c, Attribution of SBS40b signature within the Czech Republic, 
with bar plots showing the number of cases for each quartile of SBS40b 
attribution across Prague, Olomouc, Ceske Budejovice and Brno regions.
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mutation spectrum did not show statistically significant enrichment 
of T>C mutations in SBS12 exposed cases (20% versus 12%, P = 0.069), 
but was consistent with the level of enrichment in the exome (21% in 
exposed cases compared with 15% in unexposed cases). SBS40b also 
did not show statistically significant enrichment, possibly owing to 
the ubiquitous exposure and its relatively flat and featureless muta-
tion profile.

Exogenous mutagenic exposures that ultimately cause cancer may 
be present during the early stages of evolution of cancer clones. To 
time mutagenic exposures, we estimated the contribution of each 
mutational signature to mutations in the primary clone (relatively 
early) and to mutations in subclones28,29 (relatively late) (Methods). All 
signatures of the putative exogenous mutagenic exposures observed 
in ccRCC were present at relatively early stages of cancer development, 
consistent with exposures to normal cells. SBS12, SBS22b and SBS40b 
showed higher activities in main clones compared with subclones 
(q value = 0.04, q value = 0.02 and q value = 2.3 × 10−5, respectively) 
(Extended Data Fig. 10) and SBS22a showed no significant difference15,16. 
By contrast, signatures due to endogenous mutational processes 
including APOBEC DNA editing (SBS13) and oxidative damage (SBS18), 
were enriched in subclones (q value = 1.6 × 10−4 and q value = 3.2 × 10−7, 
respectively).

Established or suspected risk factors for ccRCC include age, tobacco 
smoking, obesity, hypertension, diabetes and environmental exposure 
to PFAS compounds30. Total SBS, DBS, and indel mutation burdens 
associated with age, as did SBS1, SBS4, SBS5, SBS40a, SBS40b, SBS22a, 
SBS22b, DBS2, ID1, ID5 and ID8. Total SBS (P value = 3.1 × 10−5), DBS  
(P value = 3.7 × 10−3) and indel (P = 1.3 × 10−4) mutation burdens also asso-
ciated with sex, with males having higher mutation burdens than females, 
and with SBS40b showing a similar association (P = 9.3 × 10−5). Associa-
tions with tobacco smoking were observed for SBS4 (P = 5.3 × 10−6) and 
DBS2 (P = 2.4 × 10−7), both of which are known to be caused by tobacco 
carcinogens24,31. These results suggest that the known increased risk of 
ccRCC with tobacco smoking is owing to direct exposure of the kidney 

to tobacco-related mutagens (Supplementary Note). Associations of 
particular mutational signatures with other ccRCC risk factors were 
not observed (Supplementary Tables 13 and 14). To complement this 
analysis of observational data, associations between polygenic risk 
scores for known ccRCC risk factors and mutational signatures32,33 
were examined (Methods). Consistent with the observational data, 
no associations were found between genetically inferred risk factors 
and mutational signatures except for tobacco smoking and DBS2  
(P value = 0.01; Supplementary Table 15).

Discussion
Somatic mutations in the genomes of 962 individuals with ccRCC from 
11 countries indicate the existence of multiple, widespread mutational 
processes exhibiting substantial geographical variation in their contri-
butions to ccRCC mutation loads. The results contrast with those from 
552 oesophageal squamous carcinomas from 8 countries with widely 
different oesophageal carcinoma incidence rates in which geographi-
cal differences in mutation burdens or signatures were not observed34. 
Together the studies implicate both geographically variable mutagenic 
and non-mutagenic carcinogenic exposures contributing to global 
cancer incidence. Indeed, the presence of mutational signatures associ-
ated with tobacco smoking but absence of signatures associated with 
other known ccRCC risk factors, such as obesity and hypertension, 
suggests that the latter may be mediated by non-mutagenic processes 
and, therefore, that both classes of carcinogen contribute to the devel-
opment of ccRCC.

The existence, identity and carcinogenic effect of some of the agents 
underlying these mutational processes are known. Aristolochic acids 
are believed to cause SBS22a and SBS22b and its associated signatures, 
but this study suggests that the geographical extent and proportion 
of the population acquiring mutations in southeastern Europe is far 
greater than previously anticipated, possibly affecting tens of mil-
lions of individuals. The sources of the aristolochic acid exposure, the 
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manner by which it is ingested and whether the exposure continues 
today are uncertain, and further definition of the source and extent of 
this exposure is required in order to provide a foundation for public 
health action.

The existence of the mutagenic exposures underlying SBS12 and 
SBS40b were not previously suspected, and their causative agents are 
unknown. Based on current information, the exposure causing SBS12 
is restricted to Japan. However, larger studies are now indicated to 
explore the geographical extent of exposure in Japan and neighbour-
ing countries, and the proportions of their populations that have been 
exposed. Studies of Japanese migrants to other countries are also likely 
to be informative regarding the potential source of exposure. In the first 
instance, this will be achievable by further sequencing of kidney and 
hepatocellular cancer genomes. However, studies of normal tissues 
using recently reported sequencing methods that enable detection of 
somatic mutations in normal cells35, and particularly relatively acces-
sible ones such as cells in urine that can be prospectively collected, 
may enable large population-based studies providing better charac-
terization of the exposure and its consequences. As with exposure 
to aristolochic acid in southeastern Europe, it is possible that tens of 
millions of individuals in East Asia are exposed to a potent mutagen, 
and identification of the source and extent of exposure must be a public 
health priority.

In contrast to aristolochic acid and the agent that causes SBS12, the 
exposure underlying SBS40b appears to be globally ubiquitous. It 
causes mutations predominantly in ccRCC, with much lower burdens 
in other cancer types, and generates mutation loads that correlate 
strongly with age and sex. There are few clues as to its origin or nature.

The incidence rates of ccRCC vary approximately eightfold across 
the 11 countries from which ccRCCs were sequenced. A strong positive 
correlation (P value = 5.5 × 10−18) was found between the average muta-
tion loads attributable to SBS40b in each country (and also those of ID5 
and ID8, which are correlated with SBS40b) and incidence of kidney 
cancer within each country. This correlation reflects approximately a 
tripling of average country-specific SBS40b mutation loads (a differ-
ence of around 1,000 mutations) in parallel with the eightfold increase 
of country-specific ASR.

SBS40b mutation burdens also positively correlated with biomarkers 
of impaired kidney function, reminiscent of the nephrotoxic effects 
of aristolochic acids in BEN. It is possible that the increased SBS40b 
somatic mutation load itself engenders this reduction in renal function. 
However, studies of other normal tissues suggest that they are generally 
tolerant of elevated mutation burdens, except for manifesting a higher 
incidence of neoplasia36,37. It is also possible that the agent underlying 
SBS40b is directly nephrotoxic—for example, by engendering DNA 
damage and a response to it—and that the mutations it generates are 
immaterial to kidney function. It is also conceivable, however, that 
impaired renal function, potentially owing to many different causes, 
results in a metabolic state which itself causes the elevated SBS40b 
mutation load. Whatever the mutational process underlying SBS40b, 
it is plausible that it contributes to the geographical variation in the 
ASRs for kidney cancer. It is of public health interest to determine the 
cause of SBS40b and thus to consider whether the exposure can be 
mitigated, potentially with concomitant reduction in global ccRCC 
incidence rates.

The absence of any association between several known risk fac-
tors for ccRCC and mutation burden—in particular for obesity and 
hypertension—supports a model of cancer development in which 
mutations are essential but additional factors affect the expansion 
of a mutated clone and thus the chance of it progressing into cancer38. 
Further efforts at defining how lifestyle and environmental exposures 
contribute to cancer development will therefore require a greater 
understanding of both the causes of the mutations in cell clones in 
normal tissue and the further promotion of such mutant clones by 
non-mutagenic processes.

Finally, the substantial geographical variability of SBS12, SBS22a and 
SBS22b, with most countries not showing evidence of exposure, raises 
the possibility that additional mutational signature studies of ccRCC 
involving more countries may reveal further mutagenic exposures. 
Furthermore, the results relating to SBS40b highlight the prospect that 
a significant proportion of global cancer burden may be caused by rela-
tively ubiquitous exposures that are not readily detectable by classical 
cancer epidemiology studies. The conduct of large-scale whole-genome 
sequencing for other cancer sites across high- and low-risk populations 
around the world would seem to be an appropriate strategy for detect-
ing such novel cancer-causing agents.
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Methods

Recruitment of cases and informed consent
The International Agency for Research on Cancer (IARC/WHO) coor-
dinated case recruitment through an international network of more 
than 40 collaborators from the 11 participating countries (Table 1 and 
Supplementary Table 16). The inclusion criteria for patients were ≥18 
years of age (range from 23 to 87, with a mean of 60 and a s.d. of 12), 
confirmed diagnosis of primary ccRCC and no prior cancer treatment. 
Informed consent was obtained for all participants. Patients were 
excluded if they had any condition that could interfere with their abil-
ity to provide informed consent or if there were no means of obtaining 
adequate tissues or associated data as per the protocol requirements. 
Ethical approvals were first obtained from each Local Research Ethics 
Committee and Federal Ethics Committee when applicable, as well as 
from the IARC Ethics Committee.

Bio-samples, data collection and expert pathology review
Dedicated standard operating procedures, following guidelines from 
the International Cancer Genome Consortium (ICGC), were designed by 
IARC/WHO to select appropriate case series with complete biological 
samples and exposure information as described previously34 (Supple-
mentary Table 16). In brief, for all case series included, anthropometric 
measures were taken, together with relevant information regarding 
medical and familial history. Comparable smoking and alcohol history 
was available from all centres. Detailed epidemiological information on 
residential history was collected in Czech Republic, Romania, and Ser-
bia. Potential limitations of using retrospective clinical data collected 
using different protocols from different populations were addressed by 
a central data harmonization to ensure a comparable group of exposure 
variables (Supplementary Table 16). All patient-related data as well as 
clinical, demographical, lifestyle, pathological and outcome data were 
pseudonymized locally through the use a dedicated alpha-numerical 
identifier system before being transferred to IARC/WHO central data-
base.

Original diagnostic pathology departments provided diagnostic 
histological details of contributing cases through standard abstract 
forms. IARC/WHO centralized the entire pathology workflow and 
coordinated a centralized digital pathology examination of the fro-
zen tumour tissues collected for the study as well as formalin-fixed, 
paraffin-embedded sections when available, via a web-based report 
approach and dedicated expert panel following standardized proce-
dures as described previously34. A minimum of 50% viable tumour cells 
was required for eligibility to whole-genome sequencing.

In summary, frozen tumour tissues were first examined to confirm 
the morphological type and the percentage of viable tumour cells. 
A random selection of tumour tissues was independently evaluated 
by a second pathologist. Enrichment of tumour component was per-
formed by dissection of non-tumoral part, if necessary. 90 cases over-
lapped with a previously published cohort recruited under the Cancer 
Genomics of the Kidney (CAGEKID) project5, which were also part of 
the Pan-Cancer Analysis of Whole Genomes (PCAWG) project7.

DNA extraction
Extraction of DNA from fresh frozen tumour and matched blood sam-
ples was centrally conducted at IARC/WHO except for Japan, which 
performed DNA extractions at the local centre following a similarly 
standardized DNA extraction procedure. Of the cases which proceeded 
to the final analysis (n = 962), germline DNA was extracted from either 
buffy-coat, whole blood, or from adjacent normal tissue (samples from 
Japan) using previously described protocols and methods34.

Whole-genome sequencing
In total, 1,583 renal cell carcinoma cases were evaluated, with 1,267 
confirmed as ccRCC cases. One hundred and sixteen cases (9%) were 

excluded due to insufficient viable tumour cells (pathology level), 
or inadequate DNA (tumour or germline). DNA from 1,151 cases was 
received at the Wellcome Sanger Institute for whole-genome sequenc-
ing. Fluidigm single nucleotide polymorphism (SNP) genotyping with 
a custom panel was performed to ensure that each pair of tumour 
and matched normal samples originated from the same individual. 
Whole-genome sequencing (150 bp paired end) was performed on 
the Illumina NovaSeq 6000 platform with target coverage of 40X 
for tumours and 20X for matched normal tissues. All sequencing 
reads were aligned to the GRCh38 human reference genome using 
Burrows-Wheeler-MEM (v0.7.16a and v0.7.17). Post-sequencing quality 
control metrics were applied for total coverage, evenness of coverage 
and contamination. Cases were excluded if coverage was below 30X 
for tumour or 15X for normal tissue. For evenness of coverage, the 
median over mean coverage score was calculated. Tumours with median 
over mean coverage scores outside the range of values determined 
by previous studies to be appropriate for whole-genome sequencing 
(0.92–1.09) were excluded. Conpair39 (https://github.com/nygenome/
Conpair) was used to detect contamination, cases were excluded if the 
result was greater than 3%40. A total of 962 cases passed all criteria and 
were included in subsequent analysis.

Somatic variant calling
Variant calling was performed using the standard Sanger bioinformatics 
analysis pipeline (https://github.com/cancerit). Copy number profiles 
were determined first using the algorithms ASCAT41 and BATTENBERG28, 
where tumour purity allowed. Single nucleotide variants (SNVs) were 
called with cgpCaVEMan42, indels were called with cgpPINDEL43, and 
structural rearrangements were called using BRASS. CaVEMan and 
BRASS were run using the copy number profile and purity values deter-
mined from ASCAT where possible (complete pipeline, n = 857). Where 
tumour purity was insufficient to determine an accurate copy number 
profile (partial pipeline, n = 105), CaVEMan and BRASS were run using 
copy number defaults and an estimate of purity obtained from ASCAT/
BATTENBERG. For SNV additional filters on ASRD (read length-adjusted 
alignment score of reads showing the variant allele) and CLPM (median 
number of soft-clipped bases in variant supporting reads) (ASRD ≥ 140 
and CLPM = 0) were applied to remove potential false positive calls.  
A second variant caller, Strelka2, was run for SNVs and indels as con-
sensus variant calling was previously shown to eliminate algorithm 
specific artefacts and to generate highly reproducible mutational 
spectra compared to using a single variant calling algorithm34,44. Only 
variants called by both the Sanger variant calling pipeline and Strelka2 
were included in subsequent analysis.

Validation of sequencing for Japanese cases
The matched normal tissue sequenced was blood for all countries with 
the exception of Japan, where adjacent normal kidney was used. As 
Japan displayed an enrichment of SBS12, matched blood was obtained 
from 28 of the 36 patients to confirm that the source of the matched 
normal tissue was not influencing the result. In all cases, the mutational 
spectra of Japanese ccRCC generated using either blood or adjacent 
normal kidney matched each other with a cosine similarity of >0.99.

Generation of mutational matrices
Mutational matrices for SBS, DBS and indels were generated using 
SigProfilerMatrixGenerator (https://github.com/AlexandrovLab/Sig-
ProfilerMatrixGenerator) with default options (v1.2.12)45.

Mutational signature analysis
Mutational signatures were extracted using two algorithms, SigProfiler-
Extractor (https://github.com/AlexandrovLab/SigProfilerExtractor), 
based on non-negative matrix factorization, and mSigHdp46 (https://
github.com/steverozen/mSigHdp), based on the Bayesian hierarchi-
cal Dirichlet process. For SigProfilerExtractor, de novo mutational 
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signatures were extracted from each mutational matrix using SigPro-
filerExtractor with nndsvd_min initialization (NMF_init = “nndsvd_min”) 
and default parameters (v1.1.9)47. Briefly, SigProfilerExtractor deciphers 
mutational signatures by first performing Poisson resampling of the 
original matrix with additional renormalization (based on a generalized 
mixture model approach) of hypermutators to reduce their effect on 
the overall factorization47. Non-negative matrix factorization (NMF) 
was performed using initialization with non-negative singular value 
decomposition and by applying the multiplicative update algorithm 
using the Kullback–Leibler divergence as an objective function47. NMF 
was applied with factorizations between k = 1 and k = 20 signatures; 
each factorization was repeated 500 times47. De novo SBS mutational 
signatures were extracted with SigProfilerExtractor for both SBS-288 
and SBS-1536 contexts45. The results were largely concordant with 
the SBS-1536 de novo signatures allowing additional separation of 
mutational processes, therefore the SBS-1536 de novo signatures were 
taken forward for further analysis (Supplementary Table 2). Mutational 
signatures for DBS and indels were extracted in DBS-78 and ID-83 con-
texts respectively (Supplementary Tables 3 and 4). Where possible, 
SigProfilerExtractor matched each de novo extracted mutational sig-
nature to a set of previously identified COSMIC signatures4, for SBS-
1536 signatures this requires collapsing the 1536 classification into the 
standard 96 substitution type classification with six mutation classes 
having single 3’ and 5’ sequence contexts (Supplementary Table 7). 
This step makes it possible to distinguish between de novo signatures 
which can be explained by a combination of the known catalogue of 
mutational process (which have not been completely separated during 
the extraction), and those which have not been previously identified. 
mSigHdp extraction of SBS-96 and ID-83 signatures was performed 
using the suggested parameters and using the country of origin to 
construct the hierarchy. SigProfilerExtractor’s decomposition module 
was subsequently used to match mSigHdp de novo signatures to previ-
ously identified COSMIC signatures4. Further details on the comparison 
of results between SigProfilerExtractor and mSigHdp, decomposition 
of de novo signatures into COSMIC reference signatures and support 
for the splitting of SBS40 components can be found in the Supple-
mentary Note.

Attribution of activities of mutational signatures
The de novo (SigProfiler) and COSMIC signature (SigProfiler and 
mSigHdp) activities were attributed for each sample using the MSA 
signature attribution tool (v2.0, https://gitlab.com/s.senkin/MSA)48. For 
COSMIC attributions, only COSMIC reference signatures, which were 
identified in the decomposition of de novo signatures, were included 
in the panel for attribution, in addition to de novo signatures which 
could not be decomposed into COSMIC reference. At its core, the tool 
utilizes the non-negative least squares (NNLS) approach minimizing 
the L2 distance between the input sample and the one reconstructed 
using available signatures. To limit false positive attributions, an auto-
mated optimization procedure was applied by repeated removal of all 
signatures that do not increase the L2 similarity of a sample by >0.008 
for SBS, >0.014 for DBS, and >0.03 for ID mutation types, as suggested 
by simulations. These optimal penalties were derived using an optional 
parameter (params.no_CI_for_penalties = false) utilizing a conservative 
approach in calculation of penalties. Finally, a parametric bootstrap 
approach was applied to extract 95% confidence intervals for each 
attributed mutational signature activity.

Driver mutations
A dNdS approach was used to identify genes under positive selection 
in ccRCC49. The analysis was performed both for the whole genome  
(q value < 0.01), and with restricted hypothesis testing for a panel of 369  
known cancer genes49. Variants in any gene identified as under positive 
selection in global dNdS or in the 369-cancer gene panel were assessed 
as potential drivers49. Candidate driver mutations were annotated 

with the mode of action using the Cancer Gene Census (https://can-
cer.sanger.ac.uk/census) and the Cancer Genome Interpreter tool50 
(https://www.cancergenomeinterpreter.org). Missense mutations were 
assessed using the MutationMapper tool51 (http://www.cbioportal.org/
mutation_mapper). Variants were considered likely drivers if they met 
any of the following criteria: (1) Truncating mutations in genes anno-
tated as tumour suppressors; (2) mutations annotated as probably or 
known oncogenic in MutationMapper; (3) truncating variants in genes 
with selection (q value < 0.05) for truncating mutations assumed to be 
tumour suppressors and thus likely drivers; (4) missense variants in all 
genes under positive selection and with dN/dS ratios for missense muta-
tions above 5 (assuming 4 of every 5 missense mutations are drivers) 
labelled as likely drivers; or (5) in-frame indels in genes under significant 
positive selection for in-frame indels.

Evolutionary analysis
Subclonal architecture reconstruction was performed using the 
DPClust R package v2.2.8 (refs. 28,29), after obtaining cancer cell frac-
tion (CCF) estimates by dpclust3p v1.0.8 (https://github.com/Wedge-
lab/dpclust3p) based on the variant allele frequency provided by the 
somatic variant callers and the copy number profiles determined by 
the BATTENBERG algorithm. Only tumours with at least 40% purity 
according to BATTENBERG were considered for further evolutionary 
analysis. For each tumour with at least one subclone, the respective 
somatic mutations were split into clonal and subclonal mutations using 
the most probable cluster assignment for each mutation as per the 
DPClust output. Mutations not assigned to a cluster by DPClust were 
removed from further analysis. Clusters centred at a CCF > 1.5 and ones 
where chromosome X contributed the highest number of mutations 
were deemed artifactual, and the respective mutations were removed. 
Samples with a total number of clonal or subclonal mutations below 
256 were also removed. Additionally, samples with poor separation 
between the clonal and subclonal distributions (e.g., subclone centred 
at a CCF > 0.80) were removed. Finally, only samples that had both a 
clone and at least one subclone post-filtering were retained for further 
analysis. This yielded a total of 223 samples, each with clonal and sub-
clonal mutations. SigProfilerAssignment (v0.0.13)52 (https://github.
com/AlexandrovLab/SigProfilerAssignment) was used to identify 
the activity of each mutational signature in each clone/subclone, and 
these activities were then normalized by the total number of mutations 
belonging to the clone or subclone (that is, clonal mutations were not 
included in the subclone). A two-sided Wilcoxon signed-rank test53 was 
used to assess the differences in the relative activity of each mutational 
signature between the clones and their respective subclones. P val-
ues were corrected using the Benjamini–Hochberg procedure54 and 
reported as q values in this Article.

Regressions
Signature attributions were dichotomized into presence and absence 
using confidence intervals, with presence defined as both lower and 
upper limits being positive, and absence as the lower limit being zero. If 
a signature was present in at least 75% of cases (SBS1, SBS40a, SBS40b, 
ID1 and ID5), it was dichotomized into above and below the median of 
attributed mutation counts. The binary attributions served as depend-
ent variables in logistic regressions, and relevant risk factors were 
used as factorized independent variables. To adjust for confounding 
factors, sex, age of diagnosis, country, and tobacco status were added 
as covariates in regressions. The Bonferroni method was used to test for 
significant P values (that is, a total of 224 comparisons for regressions 
with signatures, and a total of 24 comparisons for regressions with 
mutation burden). P values reported are raw (not corrected). Regres-
sions with incidence of renal cancer were performed as linear regres-
sions with mutation burdens or signature attributions (those present 
in at least 75% of cases) with confidence intervals not consistent with 
zero as a dependent variable, and ASR of renal cancer obtained from 
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Global Cancer Observatory (GLOBOCAN)11, sex and age of diagnosis 
as independent variables. ASR of renal cancer for regions of Czech 
Republic were obtained from SVOD web portal55. Signatures present 
in less than 75% of cases were dichotomized into presence and absence 
as previously mentioned and analysed using the logistic regressions. 
All regressions were performed on a sample basis.

Polygenic risk score analysis of lifestyle risk factors
In this analysis, we used the genome-wide association studies 
(GWAS) summary statistics estimated in European populations for 
well-established risk factors for ccRCC. For tobacco smoking status, 
we used results from the GSCAN consortium meta-analysis of smoking 
initiation (ever vs never status)56. For BMI, the results of UK Biobank and 
GIANT consortium meta-analysis of continuous BMI were used57. GWAS 
summary statistics related to hypertension, namely systolic blood 
pressure and diastolic blood pressure, as well as the ones related to 
diabetes58, such as fasting glucose and fasting insulin were also obtained 
using UK Biobank studies59.

Since all the GWAS summary statistics used in the current work were 
based on European populations, we used ADMIXTURE tool (v1.3.0)60 
and PCA to infer the unsupervised cluster of individuals with European 
genetic background within ccRCC cases. Hapmap SNPs (n = 1,176,821 
variants) were extracted from the ccRCC whole-genome sequence 
genotype data. After basic quality control using PLINK (v1.9b, www.
cog-genomics.org/plink/1.9/), 333 variants were removed due to 
missing genotype rate > 5%, 1,236 variants failed Hardy–Weinberg 
equilibrium test (P values < 10−8), and 18,702 variants had MAF < 1% 
in our cohort. Additionally, 3 ambiguous variants and 21,358 variants 
within regions of long-range, high linkage disequilibrium in the human 
genome (hg38) were excluded. After pruning for linkage disequilibrium, 
143,727 variants remained in ccRCC genotype data. The 1000 genome 
reference population genotype data (phase 3) for Europeans (N = 489), 
Africans (Yoruba in Ibadan, Nigeria, N = 108) and East Asians (N = 103 
from China and 104 from Japan) (https://www.internationalgenome.
org/data/) were filtered and merged with ccRCC genotype data based 
on the pruned set of variants present in both datasets. ADMIXTURE was 
run on the merged genotype data with k = 3, which would correspond 
to the 3 ancestral continental population groups that probably reflect 
the participants of our study. The ccRCC cases with European genetic 
fraction greater than 80% by the ADMIXTURE analysis were selected 
for the PRS analyses. To complement the ADMIXTURE analysis, PCA 
was run on the same samples.

The initial genotype data based on whole-genome sequence from 849 
ccRCC cases with European genetic background consisted of biallelic 
SNPs with MAF > 0.01% (to exclude ultra-rare variants; N ≈ 30 million 
variants). After basic quality control, variants with missing genotype 
rate of greater than 5% (N = 7,519,196 variants) with strong deviation 
from Hardy–Weinberg equilibrium (P values < 10−8, N = 220,862) were 
excluded. For each GWAS trait, we restricted our analyses to the biallelic 
SNPs with minor allele frequency (MAF) greater than 1% in the 1000 
Genomes reference for European populations. For the selection of the 
independent genome-wide significant hits (P values < 5 × 10−8) of each 
GWAS summary statistic used to generate the PRS, SNPs were clumped 
(r2 = 0.1 within a linkage disequilibrium window of 10 MB) using PLINK 
v1.9b61 (www.cog-genomics.org/plink/1.9/) based on the 1000 Genomes 
European reference population genotype data (N = 489; ~10 million 
variants). Where a selected GWAS hit was not found in ccRCC genotype 
data, we extracted proxies (r2 > 0.8 in 1000 Genomes) also present in 
ccRCC dataset where possible (Supplementary Table 17). The variance 
of each genetic trait explained by the genetic variants were calculated 
as previously suggested62. PRS was subsequently calculated as the sum 
of the individual’s beta-weighted genotypes using PRSice-2 software63. 
Associations were estimated per standard deviation increase in the 
PRS, which was normalized to have a mean of zero across ccRCC cases 
of European genetic ancestry.

Untargeted metabolomics association with signatures
Of the 962 subjects from the main analysis, 901 subjects were included 
in this sub-study—all Japanese samples (n = 36) as well as few cases from 
Czech Republic (n = 13), Romania (n = 5) and Russia (n = 3) were not 
included due to lack of available plasma samples. Samples were rand-
omized and analysed as two independent analytical batches. Analysis 
was performed with a UHPLC-QTOF-MS system that consisted of a 
1,290 Binary LC and a 6,550 QTOF mass spectrometer equipped with 
Jet Stream electrospray ionization source (Agilent Technologies), using 
previously described methods64. Pre-processing was performed using 
Profinder 10.0.2.162 and Mass Profiler Professional B.14.9.1 software 
(Agilent Technologies, https://www.agilent.com/). A ‘batch recursive 
feature extraction (small molecules)’ process was employed for sam-
ples and blanks to find [M + H]+ ions. The two batches were processes 
separately and the resulting features were aligned in Mass Profiler 
Professional. Chromatographic peak areas were used as a measure-
ment of intensity. No normalization or transformation of raw data was 
performed prior to the downstream data analysis.

A total of 2,392 features were detectable in at least one of the 901 
samples. Features present in only one of the two batches were filtered 
out. Recursive filtering elimination was applied to decrease redun-
dancy from highly correlated variables (r ≥ 0.85, Pearson’s r calculated 
before any transformation/imputation) by selecting the features with 
least missing data within clusters of features. A total of 944 features 
were included in the statistical analysis. Features were pre-processed: 
missing values were replaced with one-fifth of the minimal value of the 
feature before applying mean centering and Pareto scaling. Each feature 
was regressed against both de novo and COSMIC signatures, adjusting 
for sex and age of diagnosis, as well as BMI and technical factors (batch, 
acquisition order) that could impact chromatographic peak area. Mod-
els for SBS22a and SBS22b were restricted to Romanian and Serbian 
samples to find potential pathways of aristolochic acid exposure in the 
Balkan region. Logistic models were used for zero-inflated signatures 
(≥30% zeros) while quasi-Poisson regressions were used for the least 
zero-inflated signatures (SBS1, SBS40a, and SBS40b). To derive specific 
false detection rates, random variables were created from permutations 
of the initial features and regressed against signatures in the same 
fashion as true features. Maximum P value thresholds from regressions 
with random features were compared to adjusted P value thresholds 
according to Bonferroni’s procedure. The more conservative approach 
was used in selecting features of interest. Random forest models were 
also used as cross-checking multivariate models to assess the relative 
importance of each feature in explaining the signature attribution. 
As with univariate models, regression models were used for the least 
zero-inflated signatures (<30% of zeros) while classification models 
were used for all other signatures, with restriction to Romanian and 
Serbian samples for SBS22a and SBS22b. Importance was estimated 
from the total decrease in node impurities from splitting on the vari-
able, averaged over all trees. Node impurity was measured by the Gini 
index for classification, and by residual sum of squares for regression. 
The significance of importance metrics for Random forest models 
were estimated by permuting the response variable (https://github.
com/EricArcher/rfPermute).

Features considered for identification, along with their highly cor-
related counterparts, were searched in Human Metabolome Data-
base (HMDB), LipidMaps, Metlin and KEGG. Compound identity was 
confirmed by comparison of retention times and MS/MS fragmenta-
tion against chemical standards when available, or otherwise against 
reference MS/MS spectra. Since the feature 240.1468@0.8929933 
was strongly correlated with several features identified as TMAP (Sup-
plementary Table 10), the integration of these features was inspected 
and corrected manually, and regressed against SBS40b using the same 
model applied to features selected for analysis. Creatinine was identi-
fied among the features by matching its retention time and MS/MS 
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spectra against a reference standard and also regressed against SBS40b 
in the same fashion as other metabolites. Estimation of correlation 
between metabolic features was done using linear regression adjusting 
for batch and acquisition order.

Targeted metabolomics analyses
Circulating levels of per- and polyfluorinated substances (PFAS) 
and cystatin C compounds were investigated using targeted mass 
spectrometry-based methods as described previously30,65.

Out of the 962 subjects from the main analysis, plasma samples from 
909 subjects (from all countries except Japan) were randomized and 
sent frozen in dry ice to each respective laboratory for analyses. Meas-
urement of cystatin C from 906 subjects included its native form and 
isoforms (3Pro-OH cystatin C, cystatin C-desS, 3Pro-OH cystatin C-desS 
and cystatin C-desSSP) that were modelled individually and for the 
total concentration of cystatin C isoforms. Measurements of PFAS com-
pounds included PFOA (total, branch, linear), PFOS (perfluorooctanoic 
acid; total, branch, linear), PFHxS (perfluorohexane sulfonate), PFNA 
(perfluorononanoic acid), PFDA (perfluorodecanoic acid), MePFOSAA 
(n-methylperfluoro-1 octanesulfonamido acetic acid) and EtPFOSAA 
(2-(N-ethyl-perfluorooctane. sulfonamido) acetic acid).

Multivariable quasi-Poisson (for the least sparse signatures SBS1, 
SBS40a and SBS40b) and logistic regression were used to estimate the 
association between plasma concentrations of the aforementioned 
substances and mutational signatures. All compounds were modelled 
continuously (log2-transformed) and categorically, with adjustments 
made by sex, age, date of recruitment, country, BMI, tobacco and alco-
hol status in the case of PFAS molecules and by sex, age and BMI, in the 
case of cystatin C.

Geospatial analyses
Geospatial analyses were performed to estimate the regional effect 
for signature attribution, particularly for signatures thought to be 
from exogenous exposure (SBS40b, unknown and SBS22a/SB22b, aris-
tolochic acid). Residential history information was available for a large 
proportion of cases from the countries of interest: Czech Republic for 
SBS40b and Romania and Serbia for SBS22a and SBS22b, respectively. 
The 259 cases from Czech Republic within this study were recruited 
from four separate regions including Prague, České Budějovice  
(in Southern Bohemia), as well as Brno and Olomouc in the east of the 
country. Each individual residence was geocoded to its administrative 
region. All locations outside the country of recruitment were labelled 
as ‘abroad’. A multi-membership mixed model was used to account 
for the full list of regions in which each subject resided, as well as the 
proportion of life spent in that region before diagnosis. As dependent 
variable, signatures were inverse-normal transformed. Models were 
adjusted for sex and age of diagnosis (fixed effects). The regional effect 
was treated as random effect.

Statistics and reproducibility
Analyses were conducted using R version 4.1 (ref. 66) and python ver-
sion 3.9.13 (ref. 67). Handling of geospatial and other data was con-
ducted using the R packages lme4, matrixStats, Matrix, geojsonio, 
raster, rgeos, sf, sp, tmaptools, patchwork, leaflet, data.table, dplyr, 
haven, Hmisc, openxlsx, rgdal, scales, stringr, tidyr, tibble, xlsx, rfPer-
mute, randomForest, forcats, and in python using the packages pandas, 
numpy, scipy, statsmodels, firthlogist, patsy and jupyter68–97. Figures 
were created using ggplot, ggnewscale, ggpattern, ggrepel, ggsflabel, 
ggspatial, ggpubr, cowplot, matplotlib, plotly (https://plot.ly), seaborn 
and TMB_plotter98–108. Open-source maps of Czech Republic, Roma-
nia and Serbia were obtained from the Global Administrative Areas 
project109 (https://gadm.org), with the surrounding borders obtained 
from the Natural Earth project110 (https://www.naturalearthdata.com/). 
Signature extraction was replicated two times independently at both 
Wellcome Sanger Institute and UCSD, with similar results. Signature 

attribution was replicated two times independently at both Wellcome 
Sanger Institute and IARC, with similar results. All attempts at replica-
tion were successful. No other experiments other than those mentioned 
here were replicated independently due to limited resources. Addi-
tional details relating to the methods used in this study can be found 
in Supplementary Figs. 1–27 and Supplementary Note Tables 1–10.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Whole-genome sequencing data and patient metadata are deposited in 
the European Genome–Phenome Archive (EGA) associated with study 
EGAS00001003542. Aligned BAM files for all ccRCC cases included in 
the final analysis are deposited in dataset EGAD00001012102, consen-
sus SNV and indel variant calling files are in dataset EGAD00001012222, 
patient metadata are in dataset EGAD00001012223, structural rear-
rangement variant calling files are in dataset EGAD00001013726 and 
copy number variant calling are in dataset EGAD00001013727. Muta-
tional catalogues for the PCAWG dataset can be accessed at https://
dcc.icgc.org/releases/PCAWG. Data used for validation of SBS12 in 
additional cohorts can be retrieved from the original publication25 
(validation cohort 1) and EGA dataset EGAD00001009866 (validation 
cohort 2). The metabolomics data have been uploaded to the Metabo-
Lights repository as study MTBLS9394. The human reference genome 
used for alignment is available at ftp://ftp.sanger.ac.uk/pub/cancer/
support-files/reference/GRCh38_full_analysis_set_plus_decoy_hla.fa. 
All other data are provided in the accompanying Supplementary Tables.

Code availability
All algorithms used for data analysis are publicly available with reposi-
tories noted within the respective method sections and in the accom-
panying reporting summary. Code used for regression, geospatial, 
metabolomics and germline analyses as well as figures is available at 
https://gitlab.com/Mutographs/Mutographs_RCC.
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Extended Data Fig. 1 | Mutation burdens in clear cell renal cell carcinomas 
across countries. Mutation burdens for single base substitutions (SBS)  
(a), doublet base substitutions (DBS) (b) and small insertions and deletions (ID) 
(c) show significant differences between countries using the Kruskal-Wallis 
(two-sided) test (n = 961 biologically independent samples over 1 independent 
experiment). Four SBS hypermutators and four ID hypermutators above 

mutation burden of 30000 and 3000, respectively, were removed for clarity. 
Box and whiskers plots are in the style of Tukey. The line within the box is 
plotted at the median while the upper and lower ends are indicated 25th and 
75th percentiles. Whiskers show 1.5*IQR (interquartile range) and values 
outside it are shown as individual data points.
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Extended Data Fig. 2 | Principal component analysis of relative mutation 
counts. PCA performed on relative mutation counts of all ccRCC tumors 
incorporating the six mutation classes (C > A, C > G, C > T, T > A, T > C, T > G). 
Principal component 1 (PC1) clearly separates the cluster of mostly Romanian 

cases that are enriched with AA signatures, often at high mutation burdens. 
Principal component 3 (PC3) identifies a cluster of mostly Japanese cases, 
enriched with signature SBS12.
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Extended Data Fig. 4 | Doublet-base substitution signatures operative in 
clear cell renal cell carcinomas. (a) Tumour mutation burden (TMB) plot 
showing the frequency and mutations per Mb for each of the decomposed DBS 
signatures. (b) Average relative attribution for doublet-base substitution (DBS) 
signatures across countries. Signatures contributing less than 5% on average 
are grouped in the ‘Other’ category, apart from signature DBS20. Category 

named ‘<95% confidence’ accounts for the proportion of mutation burden 
which could not be assigned to any signature with confidence level of at least 
95%. (c) Decomposed DBS signatures, including reference COSMIC signatures 
as well as de novo signatures not decomposed into COSMIC reference 
signatures.
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Extended Data Fig. 5 | Small insertions and deletion signatures operative in 
clear cell renal cell carcinomas. (a) Tumour mutation burden (TMB) plot 
showing the frequency and mutations per Mb for each of the decomposed ID 
signatures. (b) Average relative attribution for small insertion and deletion (ID) 
signatures across countries. Signatures contributing less than 5% on average 

are grouped in the ‘Others’ category, apart from signature ID23. Category 
named ‘<95% confidence’ accounts for the proportion of mutation burden 
which could not be assigned to any signature with confidence level of at least 
95%. (c) Decomposed ID signatures, including reference COSMIC signatures as 
well as de novo signatures not decomposed into COSMIC reference signatures.
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SBS22a, SBS22b, DBS20 and ID23. Numbers and colors indicate correlation 
coefficient.
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Extended Data Fig. 7 | Single base substitution signatures showing 
significant differences in attributed mutation burden between countries. 
Signatures SBS40a (a) and SBS40b (b) were more prevalent in high-incidence 
regions of Czech Republic and Lithuania. Signatures SBS22a (c) and SBS22b (d) 
were enriched in Romania and Serbia. SBS1 (e), SBS5 (f) and SBS4 (g) showed 
moderate differences across countries. Signature SBS12 (h) is highly prevalent 

in Japan. Five SBS1 hypermutators above mutation burden of 1000 were 
removed for clarity. Box and whiskers plots are in the style of Tukey. The line 
within the box is plotted at the median while the upper and lower ends are 
indicated 25th and 75th percentiles. Whiskers show 1.5*IQR (interquartile 
range) and values outside it are shown as individual data points. N = 961 
biologically independent samples examined over 1 independent experiment.
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Extended Data Fig. 8 | Association of mutational signatures with incidence 
of renal cancer. Number of mutations attributed to signatures (a) SBS40a, (b) 
ID5 and (c) ID8 against age-standardized incidence rate (ASR) of kidney cancer 
in each of the eleven countries represented in the cohort. Data are presented as 

mean values +/− SEM (n = 961 biologically independent samples examined over 
1 independent experiment). The p-values shown are for the ASR variable in 
linear regressions across all cases, adjusted for sex and age of diagnosis.
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Extended Data Fig. 9 | Association of mutation burden with incidence of 
renal cancer. Association of age-standardized rates (ASR) of kidney cancer 
incidence with SBS (a), DBS (b) and ID (c) mutation burdens across countries. 
Data are presented as mean values +/− SEM (n = 961 biologically independent 

samples examined over 1 independent experiment). The p-values shown are for 
the ASR variable in linear regressions across all cases, adjusted for sex and age 
of diagnosis.
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Extended Data Fig. 10 | Evolutionary analysis of mutational signatures in 
ccRCC. Comparison of mutational signatures between clonal and subclonal 
mutations. Lines show the change in relative activity between the clonal 
mutations (main) and subclonal mutations (sub) within a sample. Blue and red 
lines represent an activity change of more than 6% (blue indicates higher in the 
clonal mutations; red indicates higher in the subclonal mutations). Bar plots 
show the distribution of activities in samples where the signature was present 

in the clonal and/or subclonal mutations; this number is represented in the title 
of each plot as X/223 for each signature (n = 223 biologically independent 
samples examined over 1 independent experiment). Black bars indicate one 
standard deviation away from the mean. Significance was assessed using a 
two-sided Wilcoxon signed-rank test, and q-values were generated using the 
Benjamini-Hochberg Procedure.



Extended Data Table 1 | Presence of signatures SBS22a, SBS22b, DBS20, ID23 across countries

Presence of signatures SBS22a, SBS22b, DBS20, ID23, as well as the union of signatures SBS22a/SBS22b and the union of all signatures across different countries in the cohort. Whole numbers 
indicate the numbers of cases with signatures attributed, whereas percentages indicate the frequencies of signatures in each country.



1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Paul Brennan

Last updated by author(s): Feb 16, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection Whole genome sequencing (150bp paired end) was performed on the Illumina NovaSeq 6000 platform with target coverage of 40X for tumors 
and 20X for paired blood. REDCap 13.1.27 was used to collect epidemiological data for cases from Barretos, Porto Alegre, Sao Paulo, Leeds, 
Vilnius, Hat Yai, Belgrade and Bucharest

Data analysis Algorithms used: 
 
Variant Calling pipelines (available at https://github.com/cancerit): 
BWA-Mem v0.7.17-r1188 
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BATTENBERG v3.5.3 
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Conpair v0.2 (https://github.com/nygenome/Conpair) 
SigProfilerMatrixGenerator v1.2.12 (https://github.com/AlexandrovLab/SigProfilerMatrixGenerator) 
SigProfilerExtractor v1.1.9: (https://github.com/AlexandrovLab/SigProfilerExtractor)  
MSA v2.0 (https://gitlab.com/s.senkin/MSA) 
mSigHdp v2.0.1 (https://github.com/steverozen/mSigHdp) 
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Cancer Genome Interpreter 2022 (https://www.cancergenomeinterpreter.org) 
MutationMapper tool v6.0.0 (http://www.cbioportal.org/mutation_mapper) 
DPClust R package v2.2.8 (https://github.com/Wedge-lab/dpclust) 
dpclust3p v1.0.8 (https://github.com/Wedge-lab/dpclust3p) 
SigProfilerAssignment (v0.0.13) 
SnpEff 5.0e (https://pcingola.github.io/SnpEff/) 
ADMIXTURE v1.3.0 (https://dalexander.github.io/admixture/) 
PLINK v1.9 and v2.00a (www.cog-genomics.org/plink/2.0/) 
PRSice 2.3.3 (https://choishingwan.github.io/PRSice/) 
Profinder 10.0.2.162 (https://www.agilent.com/) 
Mass Profiler Professional B.14.9.1 (https://www.agilent.com/) 
lme4 1.1-34 (https://github.com/lme4/lme4/) 
matrixStats 1.0.0 (https://github.com/HenrikBengtsson/matrixStats)  
Matrix 1.6-1.1 (https://matrix.r-forge.r-project.org/) 
geojsonio 0.11.3 (https://github.com/ropensci/geojsonio) 
ggnewscale 0.4.9 (https://eliocamp.github.io/ggnewscale/) 
ggpattern 1.0.1 (https://github.com/trevorld/ggpattern) 
ggrepel 0.9.3 (https://github.com/slowkow/ggrepel) 
ggsflabel 0.0.1 (https://yutannihilation.github.io/ggsflabel/) 
ggspatial 1.1.9 (https://paleolimbot.github.io/ggspatial/) 
ggpubr 0.6.0 (https://github.com/kassambara/ggpubr/) 
raster 3.6-23 (https://github.com/rspatial/raster) 
rgeos 0.6-4 (https://github.com/cran/rgeos/) 
sf 1.0-14 (https://github.com/r-spatial/sf) 
sp 2.0-0 (https://github.com/edzer/sp/) 
tmaptools 3.1-1 (https://github.com/r-tmap/tmaptools) 
patchwork 1.1.3 (https://github.com/thomasp85/patchwork) 
leaflet 2.2.0 (https://github.com/rstudio/leaflet) 
ggplot2 3.4.3 (https://github.com/tidyverse/ggplot2) 
cowplot 1.1.1 (https://wilkelab.org/cowplot/) 
data.table 1.14.8 (https://github.com/Rdatatable/data.table) 
dplyr 1.1.3 (https://github.com/tidyverse/dplyr) 
haven 2.5.3 (https://github.com/tidyverse/haven) 
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firthlogist 0.5.0 (https://github.com/jzluo/firthlogist) 
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Statistical analysis was performed in R version 4.1 and Python version 3.9.13

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Whole genome sequencing data and patient metadata are deposited in the European Genome-phenome Archive (EGA) associated with study EGAS00001003542. 
Aligned BAM files for all ccRCC cases included in the final analysis were deposited in dataset EGAD00001012102, consensus SNV and indel variant calling files in 
dataset EGAD00001012222, patient metadata in dataset EGAD00001012223, structural rearrangement variant calling files in dataset EGAD00001013726 and copy 
number variant calling in dataset EGAD00001013727. Mutational catalogs for the PCAWG dataset can be accessed at https://dcc.icgc.org/releases/PCAWG. Data 
used for validation of SBS12 in additional cohorts can be retrieved from the original publication (validation cohort 1)32 and EGA dataset EGAD00001009866 
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(validation cohort 2). The metabolomics data have been uploaded to the MetaboLights repository as study MTBLS9394. The human reference genome used for 
alignment is available at ftp://ftp.sanger.ac.uk/pub/cancer/support-files/reference/GRCh38_full_analysis_set_plus_decoy_hla.fa. All other data are provided in the 
accompanying Supplementary Tables.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex information was self-reported and collected using epidemiological questionnaires. Overall numbers are provided in the 
population characteristics section of the Reporting summary. Consent was obtained for sharing individual-level data. Sex-
based epidemiological regressions were performed, as described in the Methods section.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

To infer the individuals with European genetic background, ADMIXTURE tool and principal component analysis (PCA) were 
used as described in the Methods section. This variable was not used as a proxy for any other socially constructed variables. 
Being an unbiased estimate based on genotyping data, no confounding variables were controlled for in the relevant analyses.

Population characteristics 962 cases (380 women and 582 men) diagnosed with ccRCC were included from the following countries: A total of 962 ccRCC 
cases from 11 countries in four continents were studied, encompassing: Czech Republic (n=259), Russia (n=216), United 
Kingdom (n=115), Brazil (n=96), Canada (n=73), Serbia (n=69), Romania (n=64), Japan (n=36), Lithuania (n=16), Poland (n=13), 
and Thailand (n=5). Age of diagnosis ranging from 23 to 87 y.o., mean (SD): 60 (12).

Recruitment IARC/WHO coordinated cases recruitment through an international network of collaborators in 11 countries. The inclusion 
criteria for patients were >=18 years of age, confirmed diagnosis of primary renal cell carcinoma (RCC) and no prior 
treatment. Patients were excluded if they had any condition that could interfere with their ability to provide informed 
consent or if there were no means of obtaining adequate tissue/ blood  samples as per the protocol requirements. The 
authors are not aware of any potential self-selection bias or other biases present

Ethics oversight Ethical approvals were obtained from each Local Research Ethics Committee and Federal Ethics Committee as listed below. 
The study was submitted and approved by the IARC Ethics Committee. Informed consent was obtained from all participants. 
Barretos Cancer Institute, Barretos, Sao Paulo, Brazil 
Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil 
A.C.Camargo Cancer Center, Sao Paulo, Brazil 
Ontario Tumor Bank, Canada 
Charles University in Prague, 2nd faculty of Medicine, Prague, Czech Republic 
National Cancer Center, Tokyo, Japan 
National Cancer Institute, Vilnius, Lithuania 
Nofer Institute of Occupational Medicine, Warsaw, Poland 
University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania 
N.N. Blokhin Cancer Research Center, Moscow, Russian Federation 
International Organization for Cancer Prevention and Research, Belgrade, Serbia 
Faculty of Medicine Prince of Songkla, Hat Yai, Thailand 
St James’ University Hospital, Leeds, United Kingdom

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Cases were selected from retrospective and prospective studies from populations which reflect a range of renal cell carcinoma (RCC) 
incidence rates. Numbers were limited by the number of cases available

Data exclusions Cases were excluded for any of the following pre-established criteria; 1) Incomplete data on core set variables (age at diagnosis, sex, alcohol 
and tobacco consumption) 2) Failure to pass pathology review as described in the Methods 3) If matched tumour/normal tissue did not 
originate from the same individual as determined by Fluidigm SNP genotyping. 4) If sequencing coverage was below 30X for tumour, or 15X 
for matched normal tissue 5) Evenness of coverage criteria 6) if contamination level was above 3% as determined by Conpair. For evenness of 
coverage, the median over mean coverage (MoM) score was calculated. Tumors with MoM scores outside the range of values determined by 
previous studies to be appropriate for whole genome sequencing (0.92 – 1.09) were excluded.

Replication Signature extraction was replicated two times independently at both Wellcome Sanger Institute and UCSD, with similar results. Signature 
attribution was replicated two times independently at both Wellcome Sanger Institute and IARC, with similar results. All attempts at 
replication were successful. No other experiments other than those mentioned here were replicated independently due to limited resources.
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Randomization Randomization is not relevant for this study. Cases did not undergo interventions. All cases were collected based on diagnosis of primary renal 
cell carcinoma (RCC) and no prior treatment.

Blinding Blinding is not relevant for this study. Cases were not subject to any interventions.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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