Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper-catalysed dehydrogenation or lactonization of C(sp3)–H bonds


Cytochrome P450 enzymes are known to catalyse bimodal oxidation of aliphatic acids via radical intermediates, which partition between pathways of hydroxylation and desaturation1,2. Developing analogous catalytic systems for remote C–H functionalization remains a significant challenge3,4,5. Here, we report the development of Cu(I)-catalysed bimodal dehydrogenation/lactonization reactions of synthetically common N-methoxyamides through radical abstractions of the γ-aliphatic C–H bonds. The feasibility of switching from dehydrogenation to lactonization is also demonstrated by altering reaction conditions. The use of a readily available amide as both radical precursor and internal oxidant allows for the development of redox-neutral C–H functionalization reactions with methanol as the sole side product. These C–H functionalization reactions using a Cu(I) catalyst with loading as low as 0.5 mol.% is applied to the diversification of a wide range of aliphatic acids including drug molecules and natural products. The exceptional compatibility of this catalytic system with a wide range of oxidatively sensitive functionality demonstrates the unique advantage of using a simple amide substrate as a mild internal oxidant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bimodal oxidation via a common radical intermediate.
Fig. 2: Substrate scope for the dehydrogenation reaction.
Fig. 3: Substrate scope for the lactonization reaction.
Fig. 4: Reactions of diacid derivatives or using low loading of copper and plausible mechanism.

Similar content being viewed by others

Data availability

Crystallographic data for compounds B63, B64, C27, C86, C101 and C102, as well as for derivatives of B62 (labelled as B62-ketone) and B65 (labelled as B65-Ac) are available in the Supplementary Information files and from the Cambridge Crystallographic Data Center under reference numbers CCDC 2279927, CCDC 2271734, CCDC 2271733, CCDC 2271730, CCDC 2271732, CCDC 2271731, CCDC 2296322and CCDC 2296327, respectively. All other data supporting the findings of this study are available in the Article and its Supplementary Information.


  1. Rettie, A. E., Rettenmeier, A. W., Howald, W. N. & Baillie, T. A. Cytochrome P-450-catalyzed formation of Δ4-VPA, a toxic metabolite of valproic acid. Science 235, 890–893 (1987).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Zhou, J. et al. Spectroscopic studies of substrate interactions with clavaminate synthase 2, a multifunctional a-KG-dependent non-heme iron enzyme: correlation with mechanisms and reactivities. J. Am. Chem. Soc. 123, 7388–7398 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, C., Dong, Y. & Que, L. Jr. Modeling nonheme diiron enzymes: hydrocarbon hydroxylation and desaturation by a high-valent Fe2O2 diamond core. J. Am. Chem. Soc. 119, 3635–3636 (1997).

    Article  CAS  Google Scholar 

  4. Hull, J. F. et al. Manganese catalysts for C–H activation: an experimental/ theoretical study identifies the stereoelectronic factor that controls the switch between hydroxylation and desaturation pathways. J. Am. Chem. Soc. 132, 7605–7616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bigi, M. A., Reed, S. A. & White, M. C. Diverting non-haem iron catalyzed aliphatic C–H hydroxylations towards desaturations. Nat. Chem. 3, 216–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Larock, R. C. Comprehensive Organic Transformation (Wiley, 2018).

  7. Ishihara, Y. & Baran, P. S. Two-phase terpene total synthesis: historical perspective and application to the Taxol® problem. Synlett 12, 1733–1745 (2010).

    Google Scholar 

  8. Qiu, Y. & Gao, S. Trends in applying C–H oxidation to the total synthesis of natural products. Nat. Prod. Rep. 33, 562–581 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Buist, P. H. Fatty acid desaturases: selecting the dehydrogenation channel. Nat. Prod. Rep. 21, 249–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Hong, B., Luo, T. & Lei, X. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Breslow, R. & Baldwin, S. W. Conversion of cholestanol to 12-oxocholestanol and to cholest-14-enol and-8(14)-enol by remote oxidation. J. Am. Chem. Soc. 92, 732–734 (1970).

    Article  CAS  Google Scholar 

  14. Breslow, R. Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res. 28, 146–153 (1995).

    Article  CAS  Google Scholar 

  15. Groves, J. T., Nemo, T. E. & Myers, R. S. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene. J. Am. Chem. Soc. 101, 1032–1033 (1979).

    Article  CAS  Google Scholar 

  16. Huang, X. & Groves, J. T. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation. J. Biol. Inorg. Chem. 22, 185–207 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, R.-Y., Farmer, M. E., Chen, Y.-Q. & Yu, J.-Q. A simple and versatile amide directing group for C–H functionalizations. Angew. Chem. Int. Ed. 55, 10578–10599 (2016).

    Article  CAS  Google Scholar 

  18. Wang, D.-H., Wasa, M., Giri, R. & Yu, J.-Q. Pd(II)-catalyzed cross-coupling of sp3 C–H bonds with sp2 and sp3 boronic acids using air as the oxidant. J. Am. Chem. Soc. 130, 7190–7191 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Zard, S. Z. Recent progress in the generation and use of nitrogen-centred radicals. Chem. Soc. Rev. 37, 1603 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Fazekas, T. J. et al. Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer. Science 375, 545–550 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Davies, J., Svejstrup, T. D., Fernandez Reina, D. F., Sheikh, N. S. & Leonori, D. Visible-light-mediated synthesis of amidyl radicals: transition-metal-free hydroamination and N-arylation reactions. J. Am. Chem. Soc. 138, 8092–8095 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Davies, J., Morcillo, S. P., Douglas, J. J. & Leonori, D. Hydroxylamine derivatives as nitrogen-radical precursors in visible-light photochemistry. Chemistry 24, 12154–12163 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Jin, W. & Yu, S. Photoinduced and palladium-catalyzed remote desaturation of amide derivatives. Org. Lett. 23, 6931–6935 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Kwon, K., Simons, R. T., Nandakumar, M. & Roizen, J. L. Strategies to generate nitrogen-centered radicals that may rely on photoredox catalysis: development in reaction methodology and applications in organic synthesis. Chem. Rev. 122, 2353–2428 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Bach, R. D. & Schlegel, H. B. The bond dissociation energy of the N–O bond. J. Phys. Chem. A 125, 5014–5021 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Stateman, L. M., Dare, R. M., Paneque, A. N. & Nagib, D. A. Aza-heterocycles via copper-catalyzed, remote C–H desaturation of amines. Chem 8, 210–224 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Faulkner, A., Race, N. J., Scottb, J. S. & Bower, J. F. Copper catalyzed Heck-like cyclizations of oxime esters. Chem. Sci. 5, 2416–2421 (2014).

    Article  CAS  Google Scholar 

  28. Kochi, J. K. The decomposition of peroxides catalyzed by copper compounds and the oxidation of alkyl radicals by cupric salts. J. Am. Chem. Soc. 85, 1958–1968 (1963).

    Article  CAS  Google Scholar 

  29. Kochi, J. K. Mechanisms of organic oxidation and reduction by metal complexes: electron and ligand transfer processes form the basis for redox reactions of radicals and metal species. Science 155, 415–424 (1967).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Kochi, J. K., Bemis, A. & Jenkins, C. L. Mechanism of electron transfer oxidation of alkyl radicals by copper(II) complexes. J. Am. Chem. Soc. 90, 4616–4625 (1968).

    Article  CAS  Google Scholar 

  31. Barton, D. H. R., Beckwith, A. L. J. & Goosen, A. Photochemical transformations. Part XVI. A novel synthesis of lactones. J. Chem. Soc. 181–190 (1965).

  32. Neale, R. S., Marcus, N. L. & Schepers, R. G. The chemistry of nitrogen radicals. IV. The rearrangement of N-halamides and the synthesis of iminolactones. J. Am. Chem. Soc. 88, 3051–3058 (1966).

    Article  CAS  Google Scholar 

  33. Chen, K., Richter, J. M. & Baran, P. S. 1,3-diol synthesis via controlled, radical-mediated C–H functionalization. J. Am. Chem. Soc. 130, 7247–7249 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, K. & Baran, P. S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 459, 824–828 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Richers, J., Heilmann, M., Drees, M. & Tiefenbacher, K. Synthesis of lactones via C–H functionalization of nonactivated C(sp3)–H bonds. Org. Lett. 18, 6472–6475 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Hoste, J. On a new copper specific group. Anal. Chim. Acta 4, 23–27 (1950).

    Article  CAS  Google Scholar 

  37. Ribas, X. et al. Aryl C–H activation by CuII to form an organometallic aryl-CuIII species: a novel twist on copper disproportionation. Angew. Chem. Int. Ed. 41, 2991–2994 (2002).

    Article  CAS  Google Scholar 

  38. Xu, J. et al. Copper-catalyzed trifluoromethylation of terminal alkenes through allylic C–H bond activation. J. Am. Chem. Soc. 133, 15300–15303 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, X., Riedel, J. & Dong, V. M. Transforming olefins into γ,δ-unsaturated nitriles through copper catalysis. Angew. Chem. Int. Ed. 56, 11589–11593 (2017).

    Article  CAS  Google Scholar 

  40. Beckwith, A. L. J. & Zavitsas, A. A. Allylic oxidations by peroxy esters catalyzed by copper salts. The potential for stereoselective syntheses. J. Am. Chem. Soc. 108, 8230–8234 (1986).

    Article  CAS  Google Scholar 

Download references


We thank the Scripps Research Institute, National Institutes of Health (NIGMS, 2R01GM084019) for financial support. The content is solely our responsibility and does not necessarily represent the official views of the National Institutes of Health. We thank D. Strassfeld for proofreading and providing helpful suggestions in preparing the manuscript; Z. Li and Y.-K. Lin for proofreading supplementary information and repeating reactions; M. Gembicky and J. Bailey of the UCSD Crystallography Facility for X-ray crystallographic analysis; D.-H. Huang, L. Pasternack and G. Kroon of the Nuclear Magnetic Resonance Facility of the Scripps Researcher Services for their assistance with NMR analysis; and B. Webb and E. Billings of the Scripps Center for Metabolomics and Mass Spectrometry and Q. N. Wong of the Scripps Automated Synthesis Facility for assistance with mass spectrometry. This paper is dedicated to the memory of the late Dong-Hui Wang.

Author information

Authors and Affiliations



J.-Q.Y. conceived the concept. S.Z. and Z.-J.Z. discovered and developed the dehydrogenation/lactonization reaction. S.Z. and Z.-J.Z. conducted the mechanistic studies. S.Z., Z.-J.Z. and J.-Q.Y. wrote the manuscript. J.-Q.Y. directed the project.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

J.-Q.Y., S.Z. and Z.-J.Z. are inventors on a patent application related to this work (US Patent application 63/605,065) filed by The Scripps Research Institute. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Continued Substrate scope for the dehydrogenation reaction.

Reaction conditions: A (0.1 mmol), CuF2 (10 mol%), AcOH (8 eq.) or CSA (0.5 eq.), dioxane (0.50 mL), at 100-125 °C for 2-20 h (see the SI for details). Isolated yields are reported. aL (20 mol%) was added. bThe solvent is DCE. rr is the ratio of γ,δ-alkene/β,γ-alkene.

Extended Data Fig. 2 Continued substrate scope for the lactonization reaction.

Reaction conditions: A (0.1 mmol), CuF2 (10 mol%) or [(CH3CN)4Cu]BF4 (10 mol%), TFA (5 eq.), dioxane (0.50 mL), at 125 °C for 1-20 h (see the SI for details). Isolated yields are reported. aThe solvent is dioxane/MeNO2 (0.25 mL/0.25 mL). aThe acid is TsOH•H2O (1 eq.). b0.5 eq. CSA was used. c2.5 eq. TFA was used. d.r. = diastereomer ratio, see the SI for details.

Extended Data Fig. 3 Mechanistic studies.

(a) Investigation of Cu(I) generated in-situ. (b) Radical clock experiment. (c) Inverted regioselectivity of elimination from a cationic intermediate. See the SI for details.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1–8 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Zhang, ZJ. & Yu, JQ. Copper-catalysed dehydrogenation or lactonization of C(sp3)–H bonds. Nature 629, 363–369 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing