Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Growth of diamond in liquid metal at 1 atm pressure

Abstract

Natural diamonds were (and are) formed (thousands of million years ago) in the upper mantle of Earth in metallic melts at temperatures of 900–1,400 °C and at pressures of 5–6 GPa (refs. 1,2). Diamond is thermodynamically stable under high-pressure and high-temperature conditions as per the phase diagram of carbon3. Scientists at General Electric invented and used a high-pressure and high-temperature apparatus in 1955 to synthesize diamonds by using molten iron sulfide at about 7 GPa and 1,600 °C (refs. 4,5,6). There is an existing model that diamond can be grown using liquid metals only at both high pressure and high temperature7. Here we describe the growth of diamond crystals and polycrystalline diamond films with no seed particles using liquid metal but at 1 atm pressure and at 1,025 °C, breaking this pattern. Diamond grew in the subsurface of liquid metal composed of gallium, iron, nickel and silicon, by catalytic activation of methane and diffusion of carbon atoms into and within the subsurface regions. We found that the supersaturation of carbon in the liquid metal subsurface leads to the nucleation and growth of diamonds, with Si playing an important part in stabilizing tetravalently bonded carbon clusters that play a part in nucleation. Growth of (metastable) diamond in liquid metal at moderate temperature and 1 atm pressure opens many possibilities for further basic science studies and for the scaling of this type of growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of diamond on a liquid metal surface that is at an interface with graphite.
Fig. 2: Characterization of 13C-labelled as-grown diamond.
Fig. 3: TEM data of cross-sectional samples prepared by SEM-FIB.

Similar content being viewed by others

Data availability

The published data of this study are available on the Zenodo public database at https://doi.org/10.5281/zenodo.10803625 (ref. 58). Source data are provided with this paper.

References

  1. Haggerty, S. E. Diamond genesis in a multiply-constrained model. Nature 320, 34–38 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Pal’yanov, Y. N., Sokol, A. G., Borzdov, Y. M., Khokhryakov, A. F. & Sobolev, N. V. Diamond formation from mantle carbonate fluids. Nature 400, 417–418 (1999).

    Article  ADS  Google Scholar 

  3. Bundy, F. P. et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).

    Article  CAS  Google Scholar 

  4. Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorfjun, R. H. Man-made diamonds. Nature 176, 51–55 (1955).

    Article  ADS  CAS  Google Scholar 

  5. Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H. Preparation of diamond. Nature 184, 1094–1098 (1959).

    Article  ADS  CAS  Google Scholar 

  6. Hazen, R. M. & Hazen, R. M. The Diamond Makers (Cambridge Univ. Press, 1999).

  7. D’Haenens-Johansson, U. F. S., Butler, J. E. & Katrusha, A. N. Synthesis of diamonds and their identification. Rev. Mineral. Geochem. 88, 689–753 (2022).

    Article  Google Scholar 

  8. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  ADS  CAS  Google Scholar 

  9. Ruf, M., Wan, N. H., Choi, H., Englund, D. & Hanson, R. Quantum networks based on color centers in diamond. J. Appl. Phys. 130, 070901 (2021).

    Article  ADS  CAS  Google Scholar 

  10. Shikata, S. Single crystal diamond wafers for high power electronics. Diam. Relat. Mater. 65, 168–175 (2016).

    Article  ADS  CAS  Google Scholar 

  11. Railkar, T. A. et al. A Critical Review of Chemical Vapor-Deposited (CVD) Diamond for Electronic Applications. Crit. Rev. Solid State Mater. Sci. 25, 163–277 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Butler, J. E., Mankelevich, Y. A., Cheesman, A., Ma, J. & Ashfold, M. N. R. Understanding the chemical vapor deposition of diamond: recent progress. J. Phys. Condens. Matter 21, 364201 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Yamasaki, S., Pobedinskas, P. & Nicley, S. S. Recent advances in diamond science and technology. Phys. Status Solidi A 214, 1770167 (2017).

    Article  Google Scholar 

  14. Yarbrough, W. A. & Messier, R. J. S. Current issues and problems in the chemical vapor deposition of diamond. Science 247, 688–696 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Butler, J. E. & Windischmann, H. Developments in CVD-diamond synthesis during the past decade. MRS Bull. 23, 22–27 (1998).

    Article  CAS  Google Scholar 

  16. Schwander, M. & Partes, K. J. D. A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 20, 1287–1301 (2011).

    Article  ADS  CAS  Google Scholar 

  17. Linde, O., Geyler, O. & Epstein, A. The Global Diamond Industry 2018: A Resilient Industry Shines Through (Bain, 2018).

  18. Dossa, S. S. et al. Analysis of the high-pressure high-temperature (HPHT) growth of single crystal diamond. J. Cryst. Growth 609, 127150 (2023).

    Article  CAS  Google Scholar 

  19. Ferro, S. Synthesis of diamond. J. Mater. Chem. 12, 2843–2855 (2002).

    Article  CAS  Google Scholar 

  20. Eaton-Magaña, S., Shigley, J. E. & Breeding, C. M. Observations on HPHT-grown synthetic diamonds: a review. Gems Gemol. 53, 262–284 (2017).

    Article  Google Scholar 

  21. Sumiya, H., Harano, K. & Tamasaku, K. HPHT synthesis and crystalline quality of large high-quality (001) and (111) diamond crystals. Diam. Relat. Mater. 58, 221–225 (2015).

    Article  ADS  CAS  Google Scholar 

  22. Kalantar-Zadeh, K. et al. Emergence of liquid metals in nanotechnology. ACS Nano 13, 7388–7395 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Camacho-Mojica, D. C. et al. Charge transfer during the dissociation of H2 and the charge state of H atoms in liquid gallium. J. Phys. Chem. C 123, 26769–26776 (2019).

    Article  CAS  Google Scholar 

  26. Ueki, R. et al. In-situ observation of surface graphitization of gallium droplet and concentration of carbon in liquid gallium. Jpn. J. Appl. Phys. 51, 06FD28 (2012).

    Article  Google Scholar 

  27. Fujita, J.-I. et al. Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Sci. Rep. 7, 12371 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Upham, D. C. et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358, 917–921 (2017).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  29. Allioux, F.-M. et al. Carbonization of low thermal stability polymers at the interface of liquid metals. Carbon 171, 938–945 (2021).

    Article  CAS  Google Scholar 

  30. Kawasaki, H. et al. A liquid metal catalyst for the conversion of ethanol into graphitic carbon layers under an ultrasonic cavitation field. Chem. Commun. 58, 7741–7744 (2022).

    Article  CAS  Google Scholar 

  31. Zuraiqi, K. et al. Direct conversion of CO2 to solid carbon by Ga-based liquid metals. Energy Environ. Sci. 15, 595–600 (2022).

    Article  CAS  Google Scholar 

  32. Li, P. C. Preparation of single-crystal graphite from melts. Nature 192, 864–865 (1961).

    Article  ADS  CAS  Google Scholar 

  33. Tulloch, H. J. C. & Young, D. A. Synthetic single crystals of graphite. Nature 211, 730–731 (1966).

    Article  ADS  Google Scholar 

  34. Sumiyoshi, Y., Ushio, M. & Suzuki, S. Formation of graphite single crystal from iron solution by the slow cooling method. Bull. Chem. Soc. Jpn. 61, 1577–1585 (1988).

    Article  CAS  Google Scholar 

  35. Noda, T., Sumiyoshi, Y. & Ito, N. Growth of single crystals of graphite from a carbon-iron melt. Carbon 6, 813–816 (1968).

    Article  CAS  Google Scholar 

  36. Austerman, S. B., Myron, S. M. & Wagner, J. W. Growth and characterization of graphite single crystals. Carbon 5, 549–557 (1967).

    Article  CAS  Google Scholar 

  37. Merel, P., Tabbal, M., Chaker, M., Moisa, S. & Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 136, 105–110 (1998).

    Article  ADS  CAS  Google Scholar 

  38. Chu, C., d’Evelyn, M., Hauge, R. & Margrave, J. Mechanism of diamond growth by chemical vapor deposition on diamond (100), (111), and (110) surfaces: carbon-13 studies. J. Appl. Phys. 70, 1695–1705 (1991).

    Article  ADS  CAS  Google Scholar 

  39. Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Yang, B. et al. Fabrication of silicon-vacancy color centers in diamond films: tetramethylsilane as a new dopant source. CrystEngComm 20, 1158–1167 (2018).

    Article  CAS  Google Scholar 

  41. Feng, Z., Lin, Y., Tian, C., Hu, H. & Su, D. Combined study of the ground and excited states in the transformation of nanodiamonds into carbon onions by electron energy-loss spectroscopy. Sci. Rep. 9, 3784 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Luo, K. et al. Coherent interfaces govern direct transformation from graphite to diamond. Nature 607, 486–491 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tulić, S. et al. Covalent diamond–graphite bonding: mechanism of catalytic transformation. ACS Nano 13, 4621–4630 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wi, T.-G., Park, Y.-J., Lee, U. & Kang, Y.-B. Methane pyrolysis rate measurement using electromagnetic levitation techniques for turquoise hydrogen production: liquid In, Ga, Bi, Sn, and Cu as catalysts. Chem. Eng. J. 460, 141558 (2023).

    Article  CAS  Google Scholar 

  45. Gong, Y. et al. Homoepitaxial diamond grown in a liquid metal solvent. ChemRxiv. Preprint at https://doi.org/10.26434/chemrxiv-2022-q8ppf (2022).

  46. Ohtsuka, Y. et al. Theoretical study on the C–H activation of methane by liquid metal indium: catalytic activity of small indium clusters. J. Phys. Chem. A 123, 8907–8912 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Perdew, Burke, and Ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998).

    Article  ADS  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  51. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  ADS  Google Scholar 

  52. Nose, S. Constant-temperature molecular dynamics. J. Phys. Condens. Matter 2, SA115 (1990).

    Article  ADS  Google Scholar 

  53. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  ADS  CAS  Google Scholar 

  54. Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 1996).

  55. Sharma, B. D. & Donohue, J. A refinement of the crystal structure of gallium. Z. Kristallogr. Cryst. Mater. 117, 293–300 (1962).

    Article  CAS  Google Scholar 

  56. Assael, M. J. et al. Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J. Phys. Chem. Ref. Data 41, 033101 (2012).

    Article  ADS  Google Scholar 

  57. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 2013).

  58. Yan, G., Da, L. & Rodney, R. Source data for “Growth of diamond in liquid metal at 1 atmosphere pressure”. Zenodo https://doi.org/10.5281/zenodo.10803625 (2024).

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS-R019-D1). We thank S. Y. Lee for preliminary XRD measurements at the 9C beamline of Pohang Accelerator Laboratory to evaluate the crystalline property of the diamond sample, and B. Cunning for suggesting the EDM-3 Poco Graphite sheet material and for discussions. The experiments at the PLS-II 6D and 9 C beamline were supported in part by MSIT, POSTECH and UNIST Central Research Facilities. We thank K.-S. Lee of the UNIST Center Research Facilities for making the TOF-SIMS measurements. The DFT calculations were conducted on the IBS supercomputer.

Author information

Authors and Affiliations

Authors

Contributions

R.S.R. supervised the project. R.S.R., D.L. and Y.G. conceived the experiments. Y.G. did the growth experiments. Y.G. and D.L. characterized the diamond samples. W.K.S. designed, assembled and built, and tested the cold-wall system and the thermocouple probe array. M.C. and Z.L. took the TEM, STEM, EELS and EDS measurements. P.B. took the XPS measurements. T.J.S. and S.L. took the XRD measurements. Y.K., B.R., M.Z., I.K.P. and G.L. performed the theoretical calculations. M.W. contributed through discussion. Y.G. wrote a draft manuscript and R.S.R., D.L. and Y.G. revised it. All co-authors commented on the manuscript before its submission.

Corresponding authors

Correspondence to Da Luo, Won Kyung Seong or Rodney S. Ruoff.

Ethics declarations

Competing interests

The Institute for Basic Science has filed a patent application (KR 10-2023-0052752) that lists Y.G., D.L. and R.S.R. as inventors. Other than this, the authors declare no competing interests.

Peer review

Peer review information

Nature thanks Anirudha Sumant and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Luo, D., Choe, M. et al. Growth of diamond in liquid metal at 1 atm pressure. Nature 629, 348–354 (2024). https://doi.org/10.1038/s41586-024-07339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07339-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing