Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling

This article has been updated


Photobiocatalysis—where light is used to expand the reactivity of an enzyme—has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2,3,4,5,6,7,8,9. Here we report photobiocatalytic asymmetric sp3sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5′-phosphate-dependent enzymes, threonine aldolases10,11,12, for the α-C–H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13,14,15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox–pyridoxal biocatalysis provides a platform for sp3sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photobiocatalytic asymmetric sp3sp3 oxidative cross-coupling via cooperative triple catalytic cycles.
Fig. 2: Discovery and optimization of photobiocatalytic asymmetric sp3sp3 oxidative cross-coupling.
Fig. 3: Photobiocatalytic asymmetric sp3sp3 oxidative coupling for ncAA synthesis.
Fig. 4: Enantio- and diastereoselective synthesis of β-methyl ncAAs and enantioselective synthesis of α-tetrasubstituted ncAAs.

Similar content being viewed by others

Data availability

All data are available in the main text and the Supplementary Information. Plasmids encoding PLP radical enzymes reported in this study are available for research purposes from Y.Y. under a material transfer agreement with the University of California Santa Barbara.

Change history

  • 17 May 2024

    In the version of the article initially published, the Supplementary Data files (NMR spectra and X-ray data) were missing and are now available in the HTML version of the article.


  1. Emmanuel, M. A. et al. Photobiocatalytic strategies for organic synthesis. Chem. Rev. 123, 5459–5520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat. Catal. 5, 586–593 (2022).

    Article  CAS  Google Scholar 

  4. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Page, C. G. et al. Quaternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. J. Am. Chem. Soc. 143, 97–102 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fu, H. et al. An asymmetric sp3sp3 cross-electrophile coupling using ‘ene’-reductases. Nature 610, 302–307 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ye, Y. et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat. Chem. 15, 206–212 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, L. et al. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 381, 444–451 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Liu, J.-Q. et al. Diversity of microbial threonine aldolases and their application. J. Mol. Catal. B: Enzym. 10, 107–115 (2000).

    Article  CAS  Google Scholar 

  11. Dückers, N., Baer, K., Simon, S., Gröger, H. & Hummel, W. Threonine aldolases—screening, properties and applications in the synthesis of non-proteinogenic β-hydroxy-α-amino acids. Appl. Microbiol. Biotechnol. 88, 409–424 (2010).

    Article  PubMed  Google Scholar 

  12. Fesko, K., Strohmeier, G. A. & Breinbauer, R. Expanding the threonine aldolase toolbox for the asymmetric synthesis of tertiary α-amino acids. Appl. Microbiol. Biotechnol. 99, 9651–9661 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Nájera, C. & Sansano, J. M. Catalytic asymmetric synthesis of α-amino acids. Chem. Rev. 107, 4584–4671 (2007).

    Article  PubMed  Google Scholar 

  14. Almhjell, P. J., Boville, C. E. & Arnold, F. H. Engineering enzymes for noncanonical amino acid synthesis. Chem. Soc. Rev. 47, 8980–8997 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hickey, J. L., Sindhikara, D., Zultanski, S. L. & Schultz, D. M. Beyond 20 in the 21st century: prospects and challenges of non-canonical amino acids in peptide drug discovery. ACS Med. Chem. Lett. 14, 557–565 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lei, A. et al. Oxidative Cross-Coupling Reactions 1st edn (Wiley, 2016).

  17. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

  18. Fu, Y. et al. Engineered P450 atom-transfer radical cyclases are bifunctional biocatalysts: reaction mechanism and origin of enantioselectivity. J. Am. Chem. Soc. 144, 13344–13355 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu, W. et al. Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis. Nat. Catal. 6, 628–636 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Eliot, A. C. & Kirsch, J. F. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Du, Y.-L. & Ryan, K. S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat. Prod. Rep. 36, 430–457 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Hedges, J. B. & Ryan, K. S. Biosynthetic pathways to nonproteinogenic α-amino acids. Chem. Rev. 120, 3161–3209 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Dumas, A., Lercher, L., Spicer, C. D. & Davis, B. G. Designing logical codon reassignment – expanding the chemistry in biology. Chem. Sci. 6, 50–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Q., Gu, Q. & You, S.-L. Enantioselective carbonyl catalysis enabled by chiral aldehydes. Angew. Chem. Int. Ed. 58, 6818–6825 (2019).

    Article  CAS  Google Scholar 

  25. Maier, T. H. P. Semisynthetic production of unnatural l-α-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat. Biotechnol. 21, 422–427 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Phillips, R. S. Synthetic applications of tryptophan synthase. Tetrahedron: Asymmetry 15, 2787–2792 (2004).

    Article  CAS  Google Scholar 

  27. Hai, Y., Chen, M., Huang, A. & Tang, Y. Biosynthesis of mycotoxin fusaric acid and application of a PLP-dependent enzyme for chemoenzymatic synthesis of substituted l-pipecolic acids. J. Am. Chem. Soc. 142, 19668–19677 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frey, P. A. & Reed, G. H. Pyridoxal-5′-phosphate as the catalyst for radical isomerization in reactions of PLP-dependent aminomutases. Biochim. Biophys. Acta 1814, 1548–1557 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Hoffarth, E. R., Rothchild, K. W. & Ryan, K. S. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J. 287, 1403–1428 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Contestabile, R. et al. l-threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase. Eur. J. Biochem. 268, 6508–6525 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Schaffer, J. E., Reck, M. R., Prasad, N. K. & Wencewicz, T. A. β-Lactone formation during product release from a nonribosomal peptide synthetase. Nat. Chem. Biol. 13, 737–744 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Scott, T. A., Heine, D., Qin, Z. & Wilkinson, B. An l-threonine transaldolase is required for l-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Nat. Comm. 8, 15935 (2017).

    Article  ADS  CAS  Google Scholar 

  37. Xu, L., Wang, L.-C., Xu, X.-Q. & Lin, J. Characteristics of l-threonine transaldolase for asymmetric synthesis of β-hydroxy-α-amino acids. Catal. Sci. Technol. 9, 5943–5952 (2019).

    Article  CAS  Google Scholar 

  38. Kumar, P. et al. l-threonine transaldolase activity is enabled by a persistent catalytic intermediate. ACS Chem. Biol. 16, 86–95 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Gao, J. et al. A pyridoxal 5′-phosphate-dependent Mannich cyclase. Nat. Catal. 6, 476–486 (2023).

    Article  CAS  Google Scholar 

  40. Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B. & Barigelletti, F. in Photochemistry and Photophysics of Coordination Compounds II (eds Balzani, V. & Campagna, S.) 143–203 (Springer, 2007).

  41. Bard, A. J. et al. (eds) Standard Potentials in Aqueous Aolution 1st edn (Routledge, 1985).

  42. Liu, J.-Q. et al. Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity l-threonine aldolase from Escherichia coli. Eur. J. Biochem. 255, 220–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, J. Q., Dairi, T., Kataoka, M., Shimizu, S. & Yamada, H. l-allo-threonine aldolase from Aeromonas jandaei DK-39: gene cloning, nucleotide sequencing, and identification of the pyridoxal 5’-phosphate-binding lysine residue by site-directed mutagenesis. J. Bacteriol. 179, 3555–3560 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fesko, K., Uhl, M., Steinreiber, J., Gruber, K. & Griengl, H. Biocatalytic access to α,α-dialkyl-α-amino acids by a mechanism-based approach. Angew. Chem. Int. Ed. 49, 121–124 (2010).

    Article  CAS  Google Scholar 

  45. Kielkopf, C. L. & Burley, S. K. X-ray structures of threonine aldolase complexes: structural basis of substrate recognition. Biochemistry 41, 11711–11720 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Li, F., Yang, L.-C., Zhang, J., Chen, J. S. & Renata, H. Stereoselective synthesis of β-branched aromatic α-amino acids by biocatalytic dynamic kinetic resolution. Angew. Chem. Int. Ed. 60, 17680–17685 (2021).

    Article  CAS  Google Scholar 

  47. Guo, F. & Berglund, P. Transaminase biocatalysis: optimization and application. Green Chem. 19, 333–360 (2017).

    Article  CAS  Google Scholar 

  48. Parmeggiani, F., Weise, N. J., Ahmed, S. T. & Turner, N. J. Synthetic and therapeutic applications of ammonia-lyases and aminomutases. Chem. Rev. 118, 73–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Lennox, A. J. J., Nutting, J. E. & Stahl, S. S. Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. Chem. Sci. 9, 356–361 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Tantillo, D. J., Chen, J. & Houk, K. N. Theozymes and compuzymes: theoretical models for biological catalysis. Curr. Opin. Chem. Biol. 2, 743–750 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references


This research is supported by the NIH (R35GM147387 to Y.Y. and R35GM128779 to P.L.) and the Packard Foundation (Y.Y.). PLP enzyme mining is supported by the Herman Frasch Foundation (947-HF22 to Y.Y.). We acknowledge the NSF BioPACIFIC MIP (DMR-1933487) and NSF MRSEC at UCSB (DMR-2308708) for access to instrumentation. Computational studies were carried out at the University of Pittsburgh Center for Research Computing and the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) programme, supported by NSF award numbers OAC-2117681, OAC-1928147 and OAC-1928224. We are grateful to Y. Wang (University of Pittsburgh) for critical reading of this manuscript as well as P. C. Ford (University of California Santa Barbara) and Q. Zhu (University of Utah) for helpful discussions on photo- and electrochemistry.

Author information

Authors and Affiliations



Y.Y. conceived and directed the project. T.-C.W. discovered and optimized the oxidative photobiocatalytic process. T.-C.W. and Z.Z. performed the directed evolution and carried out the substrate scope studies. Z.B. and J.L. prepared the organoboron substrates. B.K.M. carried out the computational studies, with P.L. and Y.Y. providing guidance. Y.Y., P.L. and B.K.M. wrote the manuscript with the input of all other authors.

Corresponding authors

Correspondence to Peng Liu or Yang Yang.

Ethics declarations

Competing interests

Y.Y., T.-C.W. and Z.Z. are inventors on a patent application submitted by the University of California Santa Barbara that covers compositions, methods and applications of biocatalytic non-canonical amino acid synthesis. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Mechanistic studies.

a, TEMPO trapping studies. Reaction conditions: 1a’ (1.0 equiv, 3.0 mM), 2a (10 equiv, 30.0 mM), 1 mol% TmPLPα1 (30 μM), 10 mol% PLP (300 μM), 2 mol% (fac)-Ir(ppy)3 (60 μM), Co(NH3)6Cl3 (2.0 equiv, 6.0 mM), TEMPO (3.0 equiv, 9.0 mM), hν (440 nm), 200 mM KPi buffer, 50 °C, 12 h. b, Radical generation studies. Reaction conditions: 1a’ (1.0 equiv, 3.0 mM), 2 mol% (fac)-Ir(ppy)3 (60 μM), Co(NH3)6Cl3 (2.0 equiv, 6.0 mM), hν (440 nm), 200 mM KPi buffer, 50 °C, 12 h.

Extended Data Fig. 2 Computational studies on threonine aldolase-catalysed oxidative cross-coupling.

a, Computed energy profile using a theozyme model at the (U)ωB97X-D/6-311+G(2d,2p)-SDD(Ir)/SMD(PhCl)//(U)B3LYP-D3/6-31G(d)-SDD(Ir) level of theory. Except those in external aldimine 13, active-site residues are omitted for clarity. Enthalpy values (ΔH) are with respect to 13. b, Activation enthalpies for radical additions to quinonoid species computed using theozyme and a cofactor-only model. Enthalpies are relative to the van der Waals complex (15). c, Optimized structures of regio- and enantioselectivity-determining radical addition transition states.

Extended Data Fig. 3 UV-vis spectroscopic analysis of threonine aldolase variants upon the introduction of D-alanine, L-alanine and glycine.

a, TmTA W86N (TmPLPα1) at pH 8. b, TmTA W86N (TmPLPα1) at pH 9.

Supplementary information

Supplementary Information

Experimental procedures, methods, supplementary figures and tables, and characterization data.

Reporting Summary

Supplementary Data 1

NMR spectra.

Supplementary Data 2

X-ray data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TC., Mai, B.K., Zhang, Z. et al. Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling. Nature 629, 98–104 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing