Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term continuous ammonia electrosynthesis


Ammonia is crucial as a fertilizer and in the chemical industry and is considered to be a carbon-free fuel1. Ammonia electrosynthesis from nitrogen under ambient conditions offers an attractive alternative to the Haber–Bosch process2,3, and lithium-mediated nitrogen reduction represents a promising approach to continuous-flow ammonia electrosynthesis, coupling nitrogen reduction with hydrogen oxidation4. However, tetrahydrofuran, which is commonly used as a solvent, impedes long-term ammonia production owing to polymerization and volatility problems. Here we show that a chain-ether-based electrolyte enables long-term continuous ammonia synthesis. We find that a chain-ether-based solvent exhibits non-polymerization properties and a high boiling point (162 °C) and forms a compact solid-electrolyte interphase layer on the gas diffusion electrode, facilitating ammonia release in the gas phase and ensuring electrolyte stability. We demonstrate 300 h of continuous operation in a flow electrolyser with a 25 cm2 electrode at 1 bar pressure and room temperature, and achieve a current-to-ammonia efficiency of 64 ± 1% with a gas-phase ammonia content of approximately 98%. Our results highlight the crucial role of the solvent in long-term continuous ammonia synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of long-term electrochemical ammonia synthesis.
Fig. 2: Investigation of different solvents in a continuous-flow reactor.
Fig. 3: Structure analysis of the solvent and GDE for continuous ammonia electrosynthesis.
Fig. 4: Effects of water concentration.
Fig. 5: Long-term ammonia electrosynthesis in continuous-flow reactor.

Similar content being viewed by others

Data availability

All data are available in this article and its Supplementary Information. Source data are provided with this paper.


  1. Christensen, C. H., Johannessen, T., Sørensen, R. Z. & Nørskov, J. K. Towards an ammonia-mediated hydrogen economy? Catal. Today 111, 140–144 (2006).

    Article  CAS  Google Scholar 

  2. MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020).

    Article  CAS  Google Scholar 

  3. Iriawan, H. et al. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 1, 56 (2021).

    Article  CAS  Google Scholar 

  4. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Fichter, F., Girard, P. & Erlenmeyer, H. Elektrolytische Bindung von komprimiertem Stickstoff bei gewöhnlicher Temperatur. Helv. Chim. Acta 13, 1228–1236 (1930).

    Article  CAS  Google Scholar 

  6. Tsuneto, A., Kudo, A. & Sakata, T. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium. Chem. Lett. 22, 851–854 (1993).

    Article  Google Scholar 

  7. Tsuneto, A., Kudo, A. & Sakata, T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3. J. Electroanal. Chem. 367, 183–188 (1994).

    Article  CAS  Google Scholar 

  8. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Du, H.-L. et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature 609, 722–727 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Suryanto Bryan, H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Li, K. et al. Increasing current density of Li-mediated ammonia synthesis with high surface area copper electrodes. ACS Energy Lett. 7, 36–41 (2022).

    Article  ADS  CAS  Google Scholar 

  13. Li, S. et al. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase. Joule 6, 2083–2101 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andersen, S. Z. et al. Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. Energy Environ. Sci. 13, 4291–4300 (2020).

    Article  CAS  Google Scholar 

  15. Lazouski, N., Chung, M., Williams, K., Gala, M. L. & Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 3, 463–469 (2020).

    Article  CAS  Google Scholar 

  16. Du, H.-L. et al. The chemistry of proton carriers in high-performance lithium-mediated ammonia electrosynthesis. Energy Environ. Sci. 16, 1082–1090 (2023).

    Article  CAS  Google Scholar 

  17. Lazouski, N., Schiffer, Z. J., Williams, K. & Manthiram, K. Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule 3, 1127–1139 (2019).

    Article  CAS  Google Scholar 

  18. Cai, X. et al. Lithium-mediated electrochemical nitrogen reduction: mechanistic insights to enhance performance. iScience 24, 103105 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Steinberg, K. et al. Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nat. Energy 8, 138–148 (2023).

    Article  ADS  CAS  Google Scholar 

  20. Sažinas, R. et al. Oxygen-enhanced chemical stability of lithium-mediated electrochemical ammonia synthesis. J. Phys. Chem. Lett. 13, 4605–4611 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Krempl, K. et al. Quantitative operando detection of electro synthesized ammonia using mass spectrometry. ChemElectroChem 9, e202101713 (2022).

    Article  CAS  Google Scholar 

  22. Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    Article  ADS  CAS  Google Scholar 

  23. Liu, F.-Q. et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seto, R., Yamada, S., Matsumoto, K. & Endo, T. Synthesis of block copolymers through umpolung or treatment of propagating end of living cationic polytetrahydrofuran. Polym. Bull. 76, 3355–3370 (2019).

    Article  CAS  Google Scholar 

  25. Aouissi, A., Al-Deyab, S. S. & Al-Shahri, H. The cationic ring-opening polymerization of tetrahydrofuran with 12-tungstophosphoric acid. Molecules 15, 1398–1407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cataldo, F. Iodine: a ring opening polymerization catalyst for tetrahydrofuran. Eur. Polym. J. 32, 1297–1302 (1996).

    Article  CAS  Google Scholar 

  27. Avgousti, C., Georgolios, N., Kyriacou, G. & Ritzoulis, G. The electrochemical oxidation of tetrahydrofuran in sulphuric acid solution. Electrochim. Acta 44, 3295–3301 (1999).

    Article  CAS  Google Scholar 

  28. Zhang, L. Y., Gong, Y., Liu, H., Yuan, W. & Liu, Z. Ultrasmall and uniform Pt3Au clusters strongly suppress Ostwald ripening for efficient ethanol oxidation. Electrochem. Commun. 84, 1–5 (2017).

    Article  ADS  CAS  Google Scholar 

  29. Horwitz, G., Calvo, E. J., Méndez De Leo, L. P. & de la Llave, E. Electrochemical stability of glyme-based electrolytes for Li-O2 batteries studied by in situ infrared spectroscopy. Phys. Chem. Chem. Phys. 22, 16615–16623 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Brundle, C. R., Crist, B. V. & Bagus, P. S. Accuracy limitations for composition analysis by XPS using relative peak intensities: LiF as an example. J. Vac. Sci. Technol. A 39, 013202 (2020).

    Article  Google Scholar 

  31. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  32. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  33. Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    Article  CAS  Google Scholar 

  34. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).

    Article  ADS  CAS  Google Scholar 

  35. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  36. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  37. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  38. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  39. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  ADS  Google Scholar 

  40. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  ADS  CAS  Google Scholar 

Download references


We thank M. Ribergaard Vinther and floor managers B. P. Knudsen and J. Ejler Sørensen for help with the connection of laboratory gas lines and the building of the mass spectrometer for isotope studies. We also thank the NMR Center of the Technical University of Denmark. We gratefully acknowledge funding from Villum Fonden, part of the Villum Center for the Science of Sustainable Fuels and Chemicals (V-SUSTAIN grant no. 9455); Innovationsfonden (E-ammonia grant no. 9067-00010B); the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 741860); the Danish National Research Foundation (VISION DNRF146) and MSCA European Postdoctoral Fellowships (Eelctro-Ammonia Project no. 101059643). We thank X. Sun for her assistance with the schematic diagram.

Author information

Authors and Affiliations



S.L., Y.Z., J.K.N. and I.C. conceived the study. S.L. conducted the electrochemical experiments and collected and analysed SEM and XPS data. Y.Z. performed the theoretical calculations. X.F. contributed to the ion chromatography measurements and electrochemical experiments. J.B.P. and S.L. did the operando mass spectrometry experiments. M.S. carried out XRD measurements, and K.E.-R. did the NMR measurements. P.J.K., C.D.D. and S.L. conducted the cryo-TEM experiments and data analysis. S.Z.A., A.X., R.S., J.B.V.M., N.H.D., J.K. and P.C.K.V. contributed to the data analysis and discussions. S.L., Y.Z., J.K.N. and I.C. co-wrote the manuscript. All authors discussed the results and assisted during manuscript preparation.

Corresponding authors

Correspondence to Jens K. Nørskov or Ib Chorkendorff.

Ethics declarations

Competing interests

A patent application titled ‘Flow cell for electrochemical ammonia synthesis’ was submitted on 9 September 2022 (application number: EP22194879) regarding the DG solvent reported in this paper (inventors: M.S., J.B.P., X.F., S.Z.A., R.S., S.L., Y.Z., K. Li, J.K., P.C.K.V., J.K.N., I.C. J.B.V.M and N.H.D.; institution: Technical University of Denmark). M.S. and S.Z.A. have equity ownership in NitroVolt ApS, a Danish company working on commercializing electrochemical ammonia synthesis. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–49 and Tables 1–8.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhou, Y., Fu, X. et al. Long-term continuous ammonia electrosynthesis. Nature 629, 92–97 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing