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Automated model building and protein 
identification in cryo-EM maps

Kiarash Jamali1 ✉, Lukas Käll2, Rui Zhang3, Alan Brown4, Dari Kimanius1 ✉ & Sjors H. W. Scheres1 ✉

Interpreting electron cryo-microscopy (cryo-EM) maps with atomic models requires 
high levels of expertise and labour-intensive manual intervention in three-dimensional 
computer graphics programs1,2. Here we present ModelAngelo, a machine-learning 
approach for automated atomic model building in cryo-EM maps. By combining 
information from the cryo-EM map with information from protein sequence and 
structure in a single graph neural network, ModelAngelo builds atomic models for 
proteins that are of similar quality to those generated by human experts. For 
nucleotides, ModelAngelo builds backbones with similar accuracy to those built by 
humans. By using its predicted amino acid probabilities for each residue in hidden 
Markov model sequence searches, ModelAngelo outperforms human experts in the 
identification of proteins with unknown sequences. ModelAngelo will therefore 
remove bottlenecks and increase objectivity in cryo-EM structure determination.

Knowledge of the three-dimensional atomic structures of proteins 
and nucleic acids is essential for our understanding of the molecular 
processes of life. In recent years, considerable advances have been made 
in the determination of structures of biological macromolecules using 
electron cryo-microscopy (cryo-EM), culminating in cryo-EM maps 
of proteins with sufficient resolution to resolve individual atoms3,4. 
Accordingly, the number of new cryo-EM structures in the Electron 
Microscopy Data Bank (EMDB)5 is growing exponentially. If this trend 
continues, approximately 100,000 cryo-EM structures will be deter-
mined in the next 5 years6.

Over two-thirds of the structures reported in 2022 had resolutions 
better than 4 Å. Although individual atoms are not resolved at resolu-
tions between 2–4 Å, reliable atomic models can be built by exploiting 
previous knowledge of the chemical structures of the proteins and 
nucleic acids in the sample, including their amino acid and nucleic 
acid sequences. Typically, atomic model building in cryo-EM maps is 
performed using manual procedures in three-dimensional computer 
graphics programs1,2. Atomic model building is often time-consuming 
and requires substantial levels of expertise to produce accurate mod-
els. At resolutions better than 3 Å, experts can build atomic models 
with few errors, whereas, at resolutions below 4 Å, avoiding mistakes 
is challenging. It is therefore not uncommon for atomic models  
of biological complexes to contain errors7, with potentially serious 
consequences8.

Structure determination using cryo-EM is also an increasingly 
important tool for the discovery of new subunits in biological com-
plexes. Owing to its relaxed requirements for sample quantity and 
purity compared with other structural biology techniques, cryo-EM 
can determine structures of complexes purified from endogenous 
sources. Many such complexes contain subunits of unknown identities. 
Without previous knowledge of the amino acid sequence, identifying 
the chemical identity of individual amino acids in cryo-EM maps is 
difficult, and requires relatively high resolutions. Yet, provided that 

one can build stretches of several consecutive amino acids, database 
searches with the sequence fragments can lead to the identification 
of the corresponding protein. Recent examples include the identifica-
tion of TMEM106B in amyloid filaments from human brains9–11 and the 
detection of subunits of axonemal complexes12,13.

Here we introduce a machine-learning approach called ModelAngelo 
for the automated building of atomic models and the identification of 
proteins in cryo-EM maps. Machine-learning approaches often require 
large amounts of training data. For example, recent protein language 
models were trained on tens of millions of sequences14 and AlphaFold2 
was trained on more than 200,000 structures15. By contrast, fewer 
than 13,000 cryo-EM structures with resolutions better than 4 Å have 
been determined to date and many of these are redundant. The limited 
amount of available training data prompted us to design a multimodal 
machine-learning approach that combines local information from the 
cryo-EM map surrounding each protein or nucleic acid residue with 
additional information from the protein sequences in the sample and 
the local geometry of the structure. Similar sources of information 
are used by human experts when manually building atomic models 
in cryo-EM maps.

The sudden availability of atomic models for millions of proteins 
from protein structure prediction by AlphaFold215,16 has helped to 
guide and accelerate model building17. However, previous attempts to 
fully automate atomic modelling18–24 or the identification of unknown 
proteins25–27 have not become mainstream, although DeepTracer21,24 
and findMySequence25 have gained some traction. However, atomic 
modelling remains a time-consuming and expert-dependent pro-
cess in many structure determination projects. With the ongoing 
exponential growth in cryo-EM structures and the continuing influx 
of newcomers to the cryo-EM field, automation will be key in remov-
ing bottlenecks and replacing the dependence on human experts 
with objective methods that are accessible to all. We demonstrate 
that ModelAngelo can meet this need. Although subsequent error 
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checking and refinement remain necessary, ModelAngelo outper-
forms human experts in identifying unknown proteins and produces 
initial atomic models of comparable completeness to those obtained 
by human experts.

A multimodal approach to model building
Automated model building of proteins and nucleic acids in ModelAn-
gelo comprises three steps (Fig. 1a). Details about the network archi-
tectures that underlie these steps and how they are trained have been 
described previously28.

In the first step, positions for the backbone Cα atom of amino acids 
and the phosphor atom of nucleic acids are predicted using a convolu-
tional neural network (CNN). This CNN is a modified feature-pyramid 

network29 that predicts whether each voxel in the cryo-EM map contains 
the Cα atom of an amino acid, the phosphor atom of a nucleic acid 
residue or neither. A graph is then constructed in which each residue 
is a node, and edges are formed between each residue and its 20 near-
est neighbours.

In the second step, a graph neural network (GNN) is used to optimize 
the positions and orientations of the residues to predict their amino 
or nucleic acid identity, and to predict torsion angles for their side 
chains or bases. The GNN consists of three modules: a cryo-EM mod-
ule, a sequence module and an invariant point attention (IPA) module 
(Fig. 1b). Each node of the graph is associated with a residue feature 
vector. Each module takes the residue feature vector as input, combines 
it with new information and outputs an updated residue feature vector 
that is passed to the next module. The sequential application of the 
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Fig. 1 | Atomic modelling in ModelAngelo. a, ModelAngelo builds atomic 
models in three steps: (1) a CNN predicts protein and nucleic acid residue 
positions; (2) a GNN optimizes these positions and orientations (shown in b); 
(3) post-processing of the optimized graph leads to a complete atomic model. 
b, The GNN, which is arranged in eight layers with three modules, uses a feature 
vector per residue that is passed through MLP and integrated with additional 
data through attention mechanisms that have query (Q), key (K) and value (V) 

vectors. The cryo-EM module also produces a feature vector (C) used for 
residue prediction. The IPA module uses query points (Qpoints) and their 
distances to the neighbouring residues (Dq) for attention. Stable gradient 
propagation is ensured by residual connections with layer norms (Add LN)51. 
Residue feature vectors are used to update residue positions and orientations. 
They are also used to predict torsion angles, confidence scores and residue 
identities at the end of each layer.
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three modules in eight layers (Fig. 1b) enables the gradual extraction 
of more information from the different inputs.

The cryo-EM module incorporates information from the cryo-EM 
map and comprises two parts. First, the input feature vector is passed 
through a multilayer perceptron (MLP) network to generate query and 
value vectors. These vectors are used for cross-attention30 with key 
vectors that are calculated from a CNN on rectangular boxes that are 
extracted from the cryo-EM density map that point from the current 
residue to its 20 nearest neighbours. Intuitively, the cross-attention 
mechanism allows mixing information from each residue with that of 
its 20 nearest neighbours, depending on whether the cryo-EM density 
between them looks connected. Second, a cubic box is extracted from 
the cryo-EM map around the position of the current residue and passed 
through another CNN. The resulting vector is used in two ways: to gen-
erate amino and nucleic acid identity predictions through an MLP; 
and, after concatenation with the vector from the cross-attention, it 
is passed through another MLP to generate the output residue feature 
vector of the cryo-EM module.

The sequence module performs cross-attention for each residue with 
the user-provided amino acid sequences, which are embedded using 
the pretrained protein language model ESM-1b31. This incorporates 
information that is learned by the language model from many amino 
acid sequences, including multiple homologues. The information in 
protein language models has been shown to be sufficient for protein 
structure prediction14. The vector from the cross-attention is used in 
two ways: a first MLP is used to generate amino and nucleic acid identity 
predictions; a second MLP generates the output residue feature vec-
tor of the sequence module. For nucleic acid residues, the sequence 
module is not used.

The IPA module incorporates information from the geometry of the 
nodes in the graph and was inspired by the module with the same name 
in AlphaFold215. An MLP calculates four query points per residue and 
the Euclidean distance between the query points and the location of 
the neighbouring nodes is used to replace the cosine similarity of the 
attention algorithm between the query and key vectors. Intuitively, 
this enables the model to learn information about the topology of 
neighbouring residues, for example, about secondary structure. In 
fact, disabling this module in an ablation study led to atomic models 
with incorrect secondary structure geometry28.

In the third and final step, the residue feature vectors are post- 
processed to generate an atomic model. The feature vectors are used 
as inputs into two separate MLPs to predict new positions and ori-
entations for each residue, as well as torsion angles for amino acid 
side chains and nucleic acid bases. They are also used to predict a 
confidence score for each residue, which is based on the network’s 
predicted root-mean-squared deviation (r.m.s.d.) for the backbone 
atoms with the deposited structure. Moreover, the predictions for 
the amino or nucleic acid identities from the cryo-EM and sequence 
modules are averaged to generate probabilities for each possible 
identity for all residues. These vectors are converted into a hidden 
Markov model (HMM) profile that is used for a search against the 
input sequences using HMMER32. A profile HMM is a probabilistic 
model representing the multiple-sequence alignment (MSA) of a 
set of related sequences. The parameters of a profile HMM are nor-
mally estimated from the MSA that it strives to model; however, here 
they are instead estimated from ModelAngelo predictions. There 
are three types of state in the profile HMM. For each position of the 
MSA’s consensus sequence, there is a match (M), a delete (D) and 
an insert (I) state with respect to the query sequences33. There are 
two types of probabilities in a profile HMM: transition and emission. 
The transition probabilities reflect the probability of a sequence 
going between the M, I and D states from one position of the pro-
file to the next. ModelAngelo uses the confidence metric, c(i), that it 
predicts for each residue i to construct the transition probabilities  
as follows:
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optimized. The emission probabilities represent the probability of 
each amino acid being produced in an M or I state. For these, Model-
Angelo uses its predicted probability distribution of the amino acids 
for each residue. The resulting HMM profiles are compatible with 
HMMER334 and HHblits35. Matched residues are mutated to the cor-
responding amino or nucleic acid in the input sequences, and separate 
chains are connected on the basis of their assigned sequences and 
proximity. Finally, chains shorter than four residues are pruned from 
the model, and a full atomic model is generated from the predicted 
positions and orientations of each residue and their corresponding 
amino acid or nucleic base torsion angle predictions using idealized 
geometries. The predicted backbone r.m.s.d. values are mapped to a 
score between 0 and 1, corresponding to a linear range for r.m.s.d. 
values between 1.2 and 0.5 Å, respectively. This score is stored in the 
B-factor column of the output coordinate file as a measure of local 
confidence in the backbone geometry.

Inspired by AlphaFold15, we recycle the post-processed model from 
one round of the GNN as the starting point of a subsequent round of 
graph optimization. For this purpose, ModelAngelo was trained with a 
random number of 1–3 recycling steps. During inference, we perform 
three rounds of recycling, as the performance plateaus after three 
rounds.

We trained ModelAngelo on maps deposited in the EMDB5 before 1 
April 2022 with resolutions better than 4 Å and paired with models in 
the Protein Data Bank (PDB)36 that cover the entire map correctly, as 
described previously28. PDB files that included insertion codes, that is, 
additional residues relative to the reference sequence, were removed. 
This resulted in 3,715 map–model pairs that were used during training. 
All cryo-EM maps were resampled to a common pixel size of 1 Å. For 
comparison, findMySequence uses only 117 pairs, while DeepTracer 
uses approximately 1,400 (refs. 21,25).

To enable model building for structures with unknown sequences, 
we also trained a version of ModelAngelo without its sequence module. 
Still, for each protein residue, ModelAngelo predicts probabilities 
for all 20 amino acids. Within ModelAngelo, these probabilities are 
converted into HMM profiles and used for searches in HMMER334 as 
described above, but using a larger proteome, rather than only the 
sequences known to be present in the structure.

Protein modelling is on par with humans
To test ModelAngelo, we first considered all cryo-EM structures deter-
mined to at least 4 Å resolution and released from the EMDB between 
the cut-off date for training, 1 April 2022, and 9 February 2023. To 
reduce the computational costs, we excluded structures with more 
than 30,000 protein residues. We also removed viruses with icosahedral 
symmetry, for which typically only the asymmetric unit was built. To 
ensure that none of the sequences were seen before during training, 
we removed structures that had protein chains with more than 10% 
sequence identity to any of the proteins in the training set. Finally, we 
removed structures with insertion codes and other irregularities. This 
resulted in a test set of 177 structures (Supplementary Information), 
on which we ran ModelAngelo. Using a single A100 GPU, the smallest 
structure (PDB: 8DWI; molecular mass, 54.7 kDa) took 2 min; the larg-
est structure (PDB: 7UMS; molecular mass, 1.85 MDa) took 53 min. 
The output coordinates from ModelAngelo were refined against the 

https://doi.org/10.2210/pdb8DWI/pdb
https://doi.org/10.2210/pdb7UMS/pdb
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cryo-EM map using a standard refinement cycle in Servalcat37, and the 
refined models were compared to the deposited ones.

To assess the quality of the models generated by ModelAngelo, we 
analysed the Q-scores38 of all of the structures in the test set. The Q-score 
measures the resolvability of individual atoms in cryo-EM maps, there-
fore reflecting the quality of the built model. Provided that the model is 
built well, Q-scores also correlate with the local resolution, which can 
vary in cryo-EM maps: Q-scores of 0.4 are typical for cryo-EM maps at 
4 Å resolution, values better than 0.7 are typical for maps beyond 2 Å 
resolution and values of 0.6 are typical for maps at 3 Å resolution38. We 
implemented Q-score calculation in ModelAngelo and calculated the 
average Q-scores for all atoms in each residue of both the deposited 
models and those built by ModelAngelo. We next calculated backbone 
r.m.s.d. values between the protein models built by ModelAngelo and 
those deposited and plotted these against the Q-scores of the depos-
ited residues (Fig. 2a (pink line)). As expected, ModelAngelo builds 
models with lower r.m.s.d. values for residues with higher (better) 
Q-scores. Even for residues with Q-scores as low as 0.4, ModelAngelo 
builds models with backbone r.m.s.d. values lower than 1.0 Å. We also 
measured the completeness of the models built by ModelAngelo. We 
define completeness as the fraction of residues that are built with their 
Cα atom within 3 Å of the deposited model and with the correct amino 
acid assignment. As with backbone r.m.s.d., completeness improves for 
residues with higher Q-scores (Fig. 2a (blue line)). Overall, ModelAngelo 
built 77% of all 410,585 residues in the test set. Analysis of the deposited 
Q-scores shows that those residues not built by ModelAngelo have lower 
Q-scores than those that are built (Fig. 2b). In the deposited models, 
many of the residues with the lowest Q-scores were probably obtained 
by rigid-body docking of protein domains into poorly resolved regions 
of the cryo-EM maps. Excluding the 51,446 residues with Q-scores below 
0.4, ModelAngelo built 85% of the residues in the test set. A compari-
son of Q-scores calculated for the models built by ModelAngelo with 
those calculated for the deposited models shows that models from 
ModelAngelo are of similar quality to the deposited ones (Fig. 2c).  

The same is also true for overall Fourier shell correlation values between 
the cryo-EM maps and those parts of the models that were both built 
by ModelAngelo and present in the deposited models (Fig. 2d).

In a second test, we compared the performance of ModelAngelo with 
existing approaches for automated model building in cryo-EM maps. 
For this test, we used a subset of 27 protein structures from the 177 
structures described above (Supplementary Information). We selected 
nine single-chain structures, nine homo-oligomeric structures and nine 
hetero-oligomeric structures. For each of these types of structures, we 
selected three structures with overall resolutions below 3.3 Å, three 
structures with resolutions between 3.3 and 2.8 Å, and three struc-
tures with resolutions better than 2.8 Å. For all 27 structures, unfiltered 
half-maps were available for download from the EMDB, and we used 
these to calculate local resolutions in ResMap39. We then used Phenix40, 
Demo-EM41, Buccaneer20 and DeepTracer21 for automated model build-
ing in these maps and compared the completeness of the resulting 
models with those obtained using ModelAngelo (Fig. 2e and Extended 
Data Table 1). The best alternative approach, DeepTracer, built approxi-
mately 80% of the deposited residues in regions of the maps with local 
resolutions in the range of 2.5–3 Å; the remaining approaches built 
models with considerably lower completeness. By contrast, ModelAn-
gelo built up to 80% of the deposited residues in regions of the maps 
with local resolutions down to 3.5–4 Å, reflecting the observation that 
manual building by human experts also becomes prone to errors at 
resolutions below 4 Å. Tests in which we ran ModelAngelo without 
one or more of its modules indicate that its performance comes from 
a combination of all three modules (Fig. 2f), which is consistent with 
previous observations28.

Building good nucleic acid backbones
The test set of 177 structures described above contained only 103 
nucleic acid chains, many with just a few nucleotides. Thus, instead of 
conducting a systematic analysis as done for the proteins, we present 
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a few test cases to illustrate the quality of nucleotide building (Fig. 3). 
We applied ModelAngelo to 11 different ribosome structures that were 
determined to resolutions ranging from 1.98 to 3.80 Å (Fig. 3a,b), as well 
as a CRISPR-associated transpososome from Scytonema hofmanni42 
(Fig. 3c,d). Although ribosome structures were included in Model-
Angelo’s training set, the nucleotide sequences were not. When plot-
ting backbone r.m.s.d. values and backbone completeness against the 
Q-scores of the deposited nucleotide coordinates (Fig. 3e), we observed 
similar trends to those for the protein chains. Backbone r.m.s.d. val-
ues range from 2 Å in the worst regions of the map to values better 
than 0.5 Å in the best regions. Likewise, near-complete backbones 
are built in the best regions, while backbone completeness drops to 
below 80% for the worst regions. However, ModelAngelo struggles to 
distinguish between the two purines or the two pyrimidines, echoing 
the difficulty that humans face in building nucleotide sequences based 
solely on the cryo-EM density, if the resolution does not extend beyond 
2.5 Å. Consequently, when considering only correctly built sequences, 
the completeness of the models built by ModelAngelo drops to 80% 
for the best parts of the map, and to as low as 20% for the worst parts 
(Fig. 3e). Users should therefore carefully validate the nucleotide chains 
of models built by ModelAngelo, for example, by using nucleotide 
secondary structure predictors43. Nonetheless, ModelAngelo consid-
erably accelerates the process of building the nucleotide backbone, 
as subsequent nucleotide base changes can be made with minimal 
manual intervention. For the CRISPR-associated transpososome and 
3 out of the 11 ribosomes described above, we also used DeepTracer26 

and CryoREAD44. ModelAngelo produced nucleotide models that were 
more complete and more accurate than these alternative approaches 
(Extended Data Table 2).

Identifying novel proteins
To illustrate the performance of ModelAngelo in identifying protein 
chains in cryo-EM maps, we applied ModelAngelo to two examples of 
large cryo-EM structures that were recently determined from endog-
enous sources. The first example is a structure of the supercomplex 
of the phycobilisome (PBS), photosystem I and II (PSI and PSII) and the 
transmembrane light-harvesting complexes (LHCs) that was imaged 
in situ in the red alga Porphyridium purpureum45. The second example is 
a structure of the ciliary central apparatus and radial spokes of the green 
alga Chlamydomonas reinhardtii that was obtained by single-particle 
analysis after purification from cilia12,13.

At 16.7 MDa, the PBS–PSII–PSI–LHC supercomplex is one of the larg-
est complexes determined using single-particle cryo-EM. The deposited 
model (PDB: 7Y5E) consists of 158,730 residues in 81 unique protein 
chains, including six chains for which the authors were unable to iden-
tify the corresponding protein. The unidentified chains were termed 
LPP1 (linker of PBS–PSII 1); CNT (for connector); PsbW and Psb34 (two 
of the core subunits of PSII); LRH (a linker protein); and LPS1 (photo-
system linker protein 1). To identify these chains, we ran ModelAngelo 
without using its sequence module (using the build_no_seq option) 
to calculate an initial atomic model with HMM profiles for all chains,  
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and we searched these profiles against the proteome constructed in  
ref. 46 (using the hmm_search option). Due to local pseudosymmetry, all 
six unidentified proteins occur more than once in the cryo-EM map. This  
enables us to bootstrap weaker individual hits by cross-referencing their 
matches to the other instances. Specifically, the same six protein chains 
were identified for all instances, with E-values in the range of 5.8 × 10−66 
to 6.4 × 10−2. Using the backbone traces in the deposited model, find-
MySequence25 identified only two of the unassigned proteins (Psb34 
and PsbW). Using the backbone traces generated by ModelAngelo, 
it also found LRH. We next constructed an input sequence file that 
included all chains in the deposited model plus the six newly identified 
chains and ran ModelAngelo again. This calculation took 23 h on an 
A100 GPU. The resulting model, containing 110,742 residues, is shown 
in Fig. 4a. For most sections of the unidentified chains, ModelAngelo 
built better models than those in the deposited structure, most notably 
for LRH and CNT. ModelAngelo did not build models for parts of the 
unidentified proteins that were in regions of poor cryo-EM density. 
Besides the excellent agreement between side-chain densities in the 
cryo-EM map and the predicted sequences (Extended Data Fig. 1), the 
structures built by ModelAngelo were also highly similar to AlphaFold2 
predictions for the unidentified chains15,47 (Extended Data Fig. 2). Mod-
elAngelo did not attempt to build amino acid or nucleotide residues 
in the densities for phycocyanobilin or phycoerythrobilin cofactors 
(Extended Data Fig. 3). As the cryo-EM maps that ModelAngelo was 
trained on did contain cofactor densities, but it was trained to build 
protein and nucleic acid residues, ModelAngelo has been incentivized 
to ignore cofactor densities.

Like the PBS–PSII–PSI–LHC supercomplex, the central apparatus and 
radial spoke complexes isolated from C. reinhardtii ciliary axonemes 
are large complexes with poorly characterized subunit compositions. 
Although recent cryo-EM structures had identified 23 different radial 
spoke proteins (RSPs) and 48 different central apparatus proteins12,13, 
the deposited maps (EMDB: EMD-22475, EMD-24481 and EMD-25381) 
contained densities that were left unassigned despite considerable 
manual effort. To identify these proteins, we applied ModelAngelo 
without using its sequence module to the deposited maps and searched 
the resulting HMM profiles against the latest version of the C. reinhardtii 
predicted proteome48 (Fig. 4b and Methods). This approach identified 
four additional radial spoke proteins: FAP109, Cre05.g240450, Cre08.
g800895 and Cre17.g802036), which we rename RSP24, RSP25, RSP26 
and RSP27, respectively, and two additional central apparatus proteins 
(FAP92 and FAP374) (Extended Data Table 3). Using ModelAngelo’s 
backbone traces, findMySequence25 was unable to identify any of these 
proteins. Neither RSP24 nor RSP26 were annotated in earlier versions 
of the C. reinhardtii genome, explaining their absence from proteomic 
studies, and demonstrating the importance of high-quality genome 
annotations for de novo identification of proteins by cryo-EM. RSP27 
was identified from a fragment of just 33 residues, demonstrating 
the power of ModelAngelo to identify proteins from small sections 
of well-resolved density. Both central apparatus proteins (FAP92 and 
FAP374) bind directly to the microtubule surface and have tertiary 
structures that are poorly predicted by AlphaFold2 (Extended Data 
Fig. 4); side-chain density was therefore essential for their success-
ful identification (Extended Data Fig. 5). The identification of these 

RSP25

RSP24C

RSP24N

RS2RS2 RS1RS1

RSP26

7JTK
unassigned
RSP27

FAP92
7SQC unassigned

7SQC
unassigned

FAP374

KAA8493904
LRH

CNT
KAA8491391

LPP1
KAA8491877

PsbW
KAA8500009

KAA8496044
Psb34

KAA8492140
LPS1

C1

Phycobilisome
PSII–PSI–LHC
megacomplex

Phycobilisome
PSII–PSI–LHC
megacomplex

a

b c

Fig. 4 | Examples of protein identification using ModelAngelo. a, The 
ModelAngelo model of the single-PBS–PSII–PSI–LHC supercomplex (grey) 
showing the positions, models and map densities of six newly identified 
proteins (green). Backbone traces in the deposited model (PDB: 7Y5E) are 
shown in orange. b, Atomic model of the central apparatus microtubule C1 
showing the positions, models and map densities of two identified proteins—

FAP92 and FAP374. The orange cartoons represent poly(UNK) chains deposited 
in the original model (PDB: 7SQC). c, An atomic model of radial spokes 1 and 2 
(RS1 and RS2) bound to a doublet microtubule (grey) showing the positions, 
models and map densities of four proteins (RSP24–27, green) identified by 
ModelAngelo. Only RSP27 had a backbone trace in the deposited model (orange). 
C, C terminus; N, N terminus.
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proteins will allow their functional relevance to the regulation of ciliary 
motility to be investigated through targeted genetic manipulation.

Discussion
ModelAngelo automates atomic modelling in cryo-EM maps, building 
protein models of comparable quality to those built by human experts 
and nucleic acid models with near-complete and accurate backbones. 
ModelAngelo outperforms existing approaches for the automated 
modelling of both proteins and nucleotides. Furthermore, Model-
Angelo builds these models within hours on a modern GPU, thereby 
removing an important bottleneck in cryo-EM structure determina-
tion. Future incorporation of ModelAngelo into automated cryo-EM 
image-processing pipelines will enable users to go from data acquisition 
to atomic models in a single automated procedure.

By introducing objectivity in the model-building process, ModelAn-
gelo also informs which parts of the map can be confidently interpreted 
with an atomic model and which should be left uninterpreted. In this 
way, ModelAngelo will not only reduce the number of errors in atomic 
models but also have a role in making cryo-EM structure determination 
more accessible to the large numbers of newcomers that the field has 
experienced in recent years. Still, some degree of human supervision 
and intervention will remain necessary. Models from ModelAngelo will 
still need refinement, for example, in Servalcat37 or Phenix40, to opti-
mize their stereochemistry and fit to the cryo-EM map. Users are also 
strongly encouraged to manually check the output of ModelAngelo, 
particularly for those parts of cryo-EM maps with resolutions worse 
than 3.5–4.0 Å, as rigid-body fitting of known domains or connect-
ing loops in lower-resolution map regions to obtain a more complete 
model falls outside the scope of ModelAngelo. Colouring the model 
by its predicted confidence in backbone geometry, as stored in the 
B-factor column of the coordinate file, may guide the user towards 
parts of the model that are less reliable. ModelAngelo was trained with 
augmentation through a variety of positive and negative B-factors. It 
should therefore be relatively stable to local variations in B-factor. It 
is possible that combining ModelAngelo with neural networks that 
make cryo-EM maps look more like proteins49,50 could lead to further 
improvements, although this would probably require retraining of 
ModelAngelo to reach its full potential.

Besides accelerating cryo-EM structure determination and providing 
objectivity in atomic modelling, ModelAngelo also identifies protein 
chains in cryo-EM maps better than human experts. The reason why 
ModelAngelo outperforms the human expert in this task probably 
lies in the implementation of its sequence searches. While human 
experts typically base their identifications on discrete assignments 
of individual amino acids to various residues in unknown chains, Mod-
elAngelo exploits predicted probabilities for all 20 amino acids for 
every protein residue and combines this information with its predicted 
confidence in each residue in a full HMM search. This not only allows 
better identification of unknown chains but also helps ModelAngelo 
during the building of atomic models with known sequences, where it 
may potentially outperform human experts in placing protein chains 
for which ambiguity exists, for example, when multiple homologous 
chains coexist in a single structure. The ability to identify proteins 
in cryo-EM maps will increase in importance as ongoing advances in 
sample preparation, microscopy and image processing enable ever 
more structures to be determined for samples purified from native 
sources or visualized in situ by electron tomography of frozen cells 
or thin tissue sections.
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Methods

Changes in ModelAngelo 1.0
We previously described an early (beta) version of ModelAngelo28. 
Here we introduce the first stable release of ModelAngelo (v.1.0), which 
extends the beta version by adding the ability to build nucleotides 
and an updated HMM algorithm, as described in the main text. We 
also made minor changes in the GNN to improve the performance of 
ModelAngelo due to the enhanced requirements of building nucleo-
tides. Whereas the beta version of ModelAngelo used cryo-EM maps 
to a maximum spatial frequency of 3 Å, ModelAngelo v.1.0 uses infor-
mation up to 2 Å resolution. To capture the same context radius, the 
regions that are sampled around each residue in the cryo-EM module 
were therefore increased from 17 to 23 voxels for the cubes and from 
5 to 7 voxels for the rectangle lengths. We improved the training of 
the model by using the Lion optimizer53 and changing the dropout 
probability to 0.1 from 0 (ref. 54). To compensate for the increased 
computational costs of these changes, we also implemented several 
approaches to speed up calculations. In particular, ModelAngelo can 
now be run using multiple GPUs simultaneously, node updates are 
performed more efficiently and we use larger batch sizes in training. 
Furthermore, we confirmed that half-precision inference (running the 
model with a two-byte floating-point precision rather than the default 
four-byte one) does not affect the outcome in the GNN. As a result of 
these changes, ModelAngelo 1.0 runs faster than the beta version, even 
though it uses a larger network.

Radial spoke and central apparatus
The structure of radial spoke 1 (RS1) from C. reinhardtii (EMD-22475)12 
contained unassigned proteins that were either left unmodelled or ten-
tatively interpreted with a poly(UNK) model. To identify these proteins, 
we ran ModelAngelo without using its sequence module to calculate an 
initial atomic model with HMM profiles for all chains. We subsequently 
searched the HMM profiles against the latest version of the C. reinhardtii 
genome48, which was not available at the time of the original publica-
tion. For a known radial spoke protein, RSP6, ModelAngelo correctly 
predicted 67% of all residues even without knowledge of its sequence. 
This approach also unambiguously identified three unassigned pro-
teins: FAP109, Cre17.g802036 and Cre05.g240450, which we reassign 
as RSP25, RSP26 and RSP27, respectively. RSP27 was identified from 
a fragment of just 33 residues, demonstrating ModelAngelo’s ability 
to identify proteins from minimal information, given well-resolved 
side-chain densities.

RSP25 and RSP26 form a heterodimer in the neck of RS1. These struc-
turally similar proteins each have an N-terminal RIIa domain (similar to 
the dimerization-anchoring domain of cAMP-dependent protein kinase 
regulatory subunit) followed by two C-terminal EF-hand motifs. The 
proteins were identified on the basis of sequence differences between 
their better-resolved RIIa domains, demonstrating ModelAngelo’s 
ability to distinguish between similar proteins. RSP25 (FAP109) had 
been detected by mass spectrometry analysis of RS1 purified from 
C. reinhardtii axonemes12, providing confidence to the assignment. 
RSP26 (Cre17.g802036) was not annotated in earlier versions of the 
C. reinhardtii genome, explaining its absence from proteomic studies. 
RSP27 (Cre05.g240450) forms a small, L-shaped helix in the centre of 
the RS1 stalk.

After identification, we constructed an input sequence file that 
included all of the chains in the deposited model along with the three 
newly identified chains and ran ModelAngelo again. This approach 
identified and built extensions of RSP16 that had been left unassigned 
in the deposited model. We then extended the models of RSP25 and 
RSP26 using AlphaFold2 predictions for the EF-hand motifs, which have 
relatively poor cryo-EM density, demonstrating how ModelAngelo and 
AI-based structure prediction methods can be used together to build 
more complete atomic models.

The microtubule-bound stalk of radial spoke 2 (RS2), which is struc-
turally and compositionally different from RS1, also contained unas-
signed proteins in the deposited map (EMD-22481)12. We therefore 
applied the same process to identify one additional protein, Cre08.
g800895, which we rename RSP24. RSP24 is a 25 kDa bilobal protein 
with an N-terminal ubiquitin-like domain. An LC8-interacting protein in 
the stalk of RS2 remains unassigned due to too few resolved side chains.

In the axoneme, radial spokes interact transiently with the central 
apparatus. Structures of the two microtubules (C1 and C2) that together 
form the C. reinhardtii central apparatus have recently become avail-
able (EMD-25381 and EMD-25361)13. The map of the C1 microtubule 
(EMD-25381) contained a number of unassigned densities. We there-
fore applied ModelAngelo without using its sequence module to a 
Phenix auto-sharpened version of the map, as the original map was 
post-processed using DeepEMhancer49. This approach identified two 
new proteins: FAP92 and FAP374. FAP92 is a microtubule-associated 
protein that binds in the interprotofilament cleft between protofila-
ments 3 and 4 and repeats with 32 nm periodicity, whereas FAP374 is a 
microtubule inner protein that repeats with 16 nm periodicity. Neither 
protein has a globular fold nor is fully resolved in the map, demonstrat-
ing ModelAngelo’s ability to identify ordered fragments of proteins. The 
final models of FAP92 and FAP374 were extended manually using Coot1 
through regions of less-well-resolved density and refined in Phenix55.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All atomic models described in this paper and built by ModelAngelo 
are available for download as a single archive from Figshare (https://
doi.org/10.6084/m9.figshare.25218434).

Code availability
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license (https://github.com/3dem/model-angelo).
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Extended Data Fig. 1 | Identified proteins in the phycobilisome. Atomic models built by ModelAngelo (green) for the six proteins that were identified by 
ModelAngelo. Side chain densities in the cryo-EM map (transparent grey) are in agreement with those of the atomic models.
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Extended Data Fig. 2 | Models by ModelAngelo and AlphaFold for identified proteins in the phycobilisome. Models built by ModelAngelo (green) are shown 
next to predictions of the corresponding sequences by AlphaFold (coloured by AlphaFold’s confidence from high in blue, to low in red).



Extended Data Fig. 3 | Performance around cofactors in the phycobilisome. 
a, Cartoon representation of protein backbones (orange) and stick 
representation of a phycocyanobilin co-factor (pink) in the cryo-EM density 
(transparent grey) for the deposited phycobilisome structure. b, as in panel a, 

but for the model built by ModelAngelo (green). ModelAngelo leaves the 
cofactor density empty. c, d, as in panels a, b but for a phycoerythrobilin 
cofactor.
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Extended Data Fig. 4 | Models by ModelAngelo and AlphaFold for identified 
proteins in the ciliary axoneme. Models built by ModelAngelo (green) are 
shown next to predictions of the corresponding sequences by AlphaFold 

(coloured by AlphaFold’s confidence from high in blue, to low in red). These  
are split between a, the radial spoke proteins, and b, the central apparatus 
microtubule proteins.



Extended Data Fig. 5 | Identified proteins in the ciliary axoneme. Atomic 
models built by ModelAngelo (green) for the six proteins that were identified 
by ModelAngelo. Side chain densities in the cryo-EM map (transparent grey) 

are in agreement with those of the atomic models. These are split between a, 
the radial spoke proteins, and b, the central apparatus microtubule proteins.
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Extended Data Table 1 | Comparison with alternative approaches for the automated building of proteins

MA stands for ModelAngelo and DT for DeepTracer. Calpha RMSD is the root mean squared deviation of the predicted CA atoms against that of the deposition. Backbone RMSD is similar, but for 
the CA, C, O and N atoms of the protein backbones. Backbone recall is the fraction of the deposited residues that were predicted to be within 3 Å (as measured between CA atoms). Backbone 
precision is the fraction of the predicted residues that have a corresponding residue present in the deposition within 3 Å. Amino acid accuracy is the fraction of the predicted residues that have a 
correctly predicted amino acid identity. Finally, completeness is the fraction of deposited residues that were predicted with the correct base annotation. Numbers indicated in boldface are the 
best in each metric.



Extended Data Table 2 | Comparison with alternative approaches for the automated building of nucleotides

MA stands for ModelAngelo, CR for CryoREAD, and DT for DeepTracer. Phosphor RMSD is the root mean squared deviation of the predicted P atoms against that of the deposition. Backbone 
RMSD is similar but for the OP1, P, OP2, and O5’ atoms of the nucleotide backbones. Backbone recall is the fraction of the deposited residues that were predicted to be within 3 Å (as measured 
between P atoms). Backbone precision is the fraction of predicted residues that have a corresponding residue present in the deposition within 3 Å. Base accuracy is the fraction of the predicted 
residues that have a correctly predicted nucleotide base. Finally, completeness is the fraction of deposited residues that were predicted with the correct base annotation. Numbers indicated in 
boldface are the best in each metric.
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Extended Data Table 3 | Proteins identified in the C. reinhardtii axoneme using ModelAngelo

For each identified protein, the phytozome ID is given, together with the number residues in that protein; which residues were built by ModelAngelo; which is the corresponding EMDB entry; the 
resolution of that map; and the location of the protein. *RSP25 and RSP26 are also expected to occur in the neck of RS2, which is thought to be identical to the neck of RS1.
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