Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A high black-hole-to-host mass ratio in a lensed AGN in the early Universe

Abstract

Early JWST observations have uncovered a population of red sources that might represent a previously overlooked phase of supermassive black hole growth1,2,3. One of the most intriguing examples is an extremely red, point-like object that was found to be triply imaged by the strong lensing cluster Abell 2744 (ref. 4). Here we present deep JWST/NIRSpec observations of this object, Abell2744-QSO1. The spectroscopy confirms that the three images are of the same object, and that it is a highly reddened (AV 3) broad emission line active galactic nucleus at a redshift of zspec = 7.0451 ± 0.0005. From the width of Hβ (full width at half-maximum = 2,800 ± 250 km s−1), we derive a black hole mass of \({M}_{{\rm{BH}}}={4}_{-1}^{+2}\times 1{0}^{7}\,{M}_{\odot }\). We infer a very high ratio of black-hole-to-galaxy mass of at least 3%, an order of magnitude more than that seen in local galaxies5 and possibly as high as 100%. The lack of strong metal lines in the spectrum together with the high bolometric luminosity (Lbol = (1.1 ± 0.3) × 1045 erg s−1) indicate that we are seeing the black hole in a phase of rapid growth, accreting at 30% of the Eddington limit. The rapid growth and high black-hole-to-galaxy mass ratio of Abell2744-QSO1 suggest that it may represent the missing link between black hole seeds6 and one of the first luminous quasars7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Composite-colour image cutouts of the three images of A2744-QSO1.
Fig. 2: NIRSpec-prism spectrum of A2744-QSO1.
Fig. 3: A2744-QSO1 compared with other broad-line AGN.

Similar content being viewed by others

Data availability

The raw JWST data used in this work are publicly available on the Barbara A. Mikulski Archive for Space Telescopes (MAST). These observations specifically are associated with the JWST GO program no. 2561, JWST ERS program no. 1324, and JWST DD program no. 2756. The reduced UNCOVER mosaics, catalogues, lens models as well as spectra are part of the public data release by the UNCOVER team9,12,49 (S.H.P. et al., manuscript in preparation). The public ALMA data can be found on the ESO Science Archive under IDs 2018.1.00035.L and 2013.1.00999.S. The deep Chandra image used here comprises data from more than 60 individual programs that are available on the Chandra Data Archive. The individual observations IDs are listed in table 1 of ref. 55Source data are provided with this paper.

Code availability

This research made use of Astropy, a community-developed core Python package for Astronomy88,89 as well as the packages NumPy90, SciPy91, Matplotlib92 and the MAAT Astronomy and Astrophysics tools for MATLAB93.

References

  1. Kocevski, D. D. et al. Hidden little monsters: spectroscopic identification of low-mass, broad-line AGNs at z > 5 with CEERS. Astrophys. J. Lett. 954, L4 (2023).

    ADS  Google Scholar 

  2. Matthee, J. et al. Little Red Dots: an abundant population of faint AGN at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Preprint at arxiv.org/abs/2306.05448 (2023).

  3. Labbe, I. et al. UNCOVER: candidate red active galactic nuclei at 3 < z < 7 with JWST and ALMA. Preprint at arxiv.org/abs/2306.07320 (2023).

  4. Furtak, L. J. et al. JWST UNCOVER: extremely Red and Compact Object at zphot 7.6 triply imaged by A2744. Astrophys. J. 952, 142 (2023).

    ADS  Google Scholar 

  5. Bennert, V. N., Auger, M. W., Treu, T., Woo, J.-H. & Malkan, M. A. The relation between black hole mass and host spheroid stellar mass out to z ~ 2. Astrophys. J. 742, 107 (2011).

    ADS  Google Scholar 

  6. Volonteri, M., Habouzit, M. & Colpi, M. The origins of massive black holes. Nat. Rev. Phys. 3, 732–743 (2021).

    Google Scholar 

  7. Fan, X., Bañados, E. & Simcoe, R. A. Quasars and the Intergalactic Medium at Cosmic Dawn. Annu. Rev. Astron. Astrophys. 61, 373–426 (2023).

    ADS  CAS  Google Scholar 

  8. Rieke, M. J. et al. Performance of NIRCam on JWST in Flight. Publ. Astron. Soc. Pac. 135, 028001 (2023).

    ADS  Google Scholar 

  9. Bezanson, R. et al. The JWST UNCOVER Treasury survey: Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization. Preprint at arxiv.org/abs/2212.04026 (2022).

  10. Lotz, J. M. et al. The frontier fields: survey design and initial results. Astrophys. J. Suppl. Ser. 837, 97 (2017).

    Google Scholar 

  11. Abell, G. O., Corwin, H. G.Jr & Olowin, R. P. A catalog of rich clusters of galaxies. Astrophys. J. Suppl, Ser. 70, 1–138 (1989).

    ADS  Google Scholar 

  12. Furtak, L. J. et al. UNCOVERing the extended strong lensing structures of Abell 2744 with the deepest JWST imaging. Mon. Not. R. Astron. Soc. 523, 4568–4582 (2023).

    ADS  Google Scholar 

  13. Atek, H. et al. Probing the z > 6 Universe with the first Hubble frontier fields cluster A2744. Astrophys. J. 786, 60 (2014).

    ADS  Google Scholar 

  14. Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).

    CAS  Google Scholar 

  15. Hao, L. et al. Active galactic nuclei in the Sloan Digital Sky Survey. II. Emission-line luminosity function. Astron. J. 129, 1795–1808 (2005).

    ADS  CAS  Google Scholar 

  16. Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A quantitative comparison of the small Magellanic cloud, large Magellanic cloud, and Milky Way ultraviolet to near-infrared extinction curves. Astrophys. J. 594, 279–293 (2003).

    ADS  CAS  Google Scholar 

  17. Fujimoto, S. et al. DUALZ: deep UNCOVER-ALMA legacy high-Z survey. Preprint at arxiv.org/abs/2309.07834 (2023).

  18. Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122–129 (2005).

    ADS  CAS  Google Scholar 

  19. Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoc. Argent. Astron. Plata Argent. 6, 41–43 (1963).

    ADS  Google Scholar 

  20. Vanzella, E. et al. JWST/NIRCam probes young star clusters in the reionization era sunrise arc. Astrophys. J. 945, 53 (2023).

    ADS  Google Scholar 

  21. Baggen, J. F. W. et al. Sizes and mass profiles of candidate massive galaxies discovered by JWST at 7 < z < 9: evidence for very early formation of the central 100 pc of present-day ellipticals. Astrophys. J. Lett. 955, L12 (2023).

    ADS  Google Scholar 

  22. Izumi, T. et al. Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XIII. Large-scale feedback and star formation in a low-luminosity quasar at z = 7.07 on the local black hole to host mass relation. Astrophys. J. 914, 36 (2021).

    ADS  CAS  Google Scholar 

  23. Vanden Berk, D. E. et al. Composite Quasar Spectra from the Sloan Digital Sky Survey. Astron. J. 122, 549–564 (2001).

    ADS  Google Scholar 

  24. Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs at z = 4–7: detection of 10 faint AGNs with MBH 106–108M and their host galaxy properties. Astrophys. J. 959, 39 (2023).

    ADS  Google Scholar 

  25. Veilleux, S., Meléndez, M., Tripp, T. M., Hamann, F. & Rupke, D. S. N. The complete ultraviolet spectrum of the archetypal “wind-dominated” quasar Mrk 231: absorption and emission from a high-speed dusty nuclear outflow. Astrophys. J. 825, 42 (2016).

    ADS  Google Scholar 

  26. Banerji, M., Alaghband-Zadeh, S., Hewett, P. C. & McMahon, R. G. Heavily reddened type 1 quasars at z > 2 – I. Evidence for significant obscured black hole growth at the highest quasar luminosities. Mon. Not. R. Astron. Soc. 447, 3368–3389 (2015).

    ADS  CAS  Google Scholar 

  27. Leighly, K. M., Halpern, J. P., Jenkins, E. B. & Casebeer, D. The intrinsically X-ray-weak quasar PHL 1811. II. Optical and UV spectra and analysis. Astrophys. J. Suppl. Ser. 173, 1–36 (2007).

    ADS  CAS  Google Scholar 

  28. Abramowicz, M. A., Czerny, B., Lasota, J. P. & Szuszkiewicz, E. Slim accretion disks. Astrophys. J. 332, 646 (1988).

    ADS  Google Scholar 

  29. Fujimoto, S. et al. A dusty compact object bridging galaxies and quasars at cosmic dawn. Nature 604, 261–265 (2022).

    ADS  CAS  PubMed  Google Scholar 

  30. Matsuoka, Y. et al. Quasar Luminosity Function at z = 7. Astrophys. J. Lett. 949, L42 (2023).

    ADS  Google Scholar 

  31. Larson, R. L. et al. A CEERS discovery of an accreting supermassive black hole 570 Myr after the Big Bang: identifying a progenitor of massive z > 6 quasars. Astrophys. J. Lett. 953, L29 (2023).

    ADS  Google Scholar 

  32. Maiolino, R. et al. A small and vigorous black hole in the early Universe. Preprint at arxiv.org/abs/2305.12492 (2023).

  33. Maiolino, R. et al. JADES. The diverse population of infant Black Holes at 4 < z < 11: merging, tiny, poor, but mighty. Preprint at arxiv.org/abs/2308.01230 (2023).

  34. Goulding, A. D. et al. UNCOVER: the growth of the first massive black holes from JWST/NIRSpec – spectroscopic redshift confirmation of an X-ray luminous AGN at z = 10.1. Astrophys. J. Lett. 955, L24 (2023).

    ADS  Google Scholar 

  35. Greene, J. E. et al. UNCOVER spectroscopy confirms a surprising ubiquity of AGN in red galaxies at z > 5. Preprint at arxiv.org/abs/2309.05714 (2023).

  36. Atek, H., Richard, J., Kneib, J.-P. & Schaerer, D. The extreme faint end of the UV luminosity function at z ~ 6 through gravitational telescopes: a comprehensive assessment of strong lensing uncertainties. Mon. Not. R. Astron. Soc. 479, 5184–5195 (2018).

    ADS  CAS  Google Scholar 

  37. Dayal, P. et al. The hierarchical assembly of galaxies and black holes in the first billion years: predictions for the era of gravitational wave astronomy. Mon. Not. R. Astron. Soc. 486, 2336–2350 (2019).

    ADS  CAS  Google Scholar 

  38. Piana, O., Dayal, P., Volonteri, M. & Choudhury, T. R. The mass assembly of high-redshift black holes. Mon. Not. R. Astron. Soc. 500, 2146–2158 (2021).

    ADS  CAS  Google Scholar 

  39. Habouzit, M. et al. Co-evolution of massive black holes and their host galaxies at high redshift: discrepancies from six cosmological simulations and the key role of JWST. Mon. Not. R. Astron. Soc. 511, 3751–3767 (2022).

    ADS  CAS  Google Scholar 

  40. De Laurentis, M. & Salucci, P. The Accurate Mass Distribution of M87, the Giant Galaxy with Imaged Shadow of Its Supermassive Black Hole, as a Portal to New Physics. Astrophys. J. 929, 17 (2022).

    ADS  Google Scholar 

  41. Kroupa, P., Subr, L., Jerabkova, T. & Wang, L. Very high redshift quasars and the rapid emergence of supermassive black holes. Mon. Not. R. Astron. Soc. 498, 5652–5683 (2020).

    ADS  CAS  Google Scholar 

  42. Yang, J. et al. Probing early supermassive black hole growth and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3 ≤ z ≤ 7.64. Astrophys. J. 923, 262 (2021).

    ADS  CAS  Google Scholar 

  43. Reines, A. E. & Volonteri, M. Relations between Central Black Hole Mass and Total Galaxy Stellar Mass in the Local Universe. Astrophys. J. 813, 82 (2015).

    ADS  Google Scholar 

  44. Suh, H. et al. No significant evolution of relations between black hole mass and galaxy total stellar mass up to z ~ 2.5. Astrophys. J. 889, 32 (2020).

    ADS  CAS  Google Scholar 

  45. Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    ADS  CAS  Google Scholar 

  46. Gardner, J. P. et al. The James Webb Space Telescope Mission. Publ. Astron. Soc. Pac. 135, 068001 (2023).

    ADS  Google Scholar 

  47. McElwain, M. W. et al. The James Webb Space Telescope Mission: optical telescope element design, development, and performance. Publ. Astron. Soc. Pac. 135, 058001 (2023).

    ADS  Google Scholar 

  48. Böker, T. et al. In-orbit performance of the near-infrared spectrograph NIRSpec on the James Webb Space Telescope. Publ. Astron. Soc. Pac. 135, 038001 (2023).

    ADS  Google Scholar 

  49. Weaver, J. R. et al. The UNCOVER survey: a first-look HST + JWST catalog of 60,000 galaxies near A2744 and beyond. Astrophys. J. Suppl. Ser. 270, 7 (2024).

    ADS  Google Scholar 

  50. Brammer, G. grizli (1.8.3). Zenodo https://doi.org/10.5281/zenodo.8210732 (2023).

  51. Treu, T. et al. The GLASS-JWST Early Release Science Program. I. Survey design and release plans. Astrophys. J. 935, 110 (2022).

    ADS  Google Scholar 

  52. Ferruit, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS). Astron. Astrophys. 661, A81 (2022).

    CAS  Google Scholar 

  53. Brammer, G. msaexp: NIRSpec analyis tools. Zenodo https://doi.org/10.5281/zenodo.7313329 (2022).

  54. González-López, J. et al. The ALMA Frontier Fields Survey. I. 1.1 mm continuum detections in Abell 2744, MACS J0416.1-2403 and MACS J1149.5+2223. Astron. Astrophys. 597, A41 (2017).

    Google Scholar 

  55. Bogdan, A. et al. Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar. Nat. Astron. 8, 26–133 (2024).

  56. Bergamini, P. et al. The GLASS-JWST Early Release Science Program. III. Strong-lensing model of Abell 2744 and its infalling regions. Astrophys. J. 952, 84 (2023).

    ADS  Google Scholar 

  57. Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).

    ADS  Google Scholar 

  58. Pascale, M. et al. Unscrambling the lensed galaxies in JWST images behind SMACS 0723. Astrophys. J. Lett. 938, L6 (2022).

    ADS  Google Scholar 

  59. Elíasdóttir, Á. et al. Where is the matter in the merging cluster Abell 2218? Preprint at arxiv.org/abs/0710.5636 (2007).

  60. Bergamini, P. et al. New high-precision strong lensing modeling of Abell 2744. Preparing for JWST observations. Astron. Astrophys. 670, A60 (2023).

    Google Scholar 

  61. Jaffe, W. A simple model for the distribution of light in spherical galaxies. Mon. Not. R. Astron. Soc. 202, 995–999 (1983).

    ADS  Google Scholar 

  62. Keeton, C. R. A catalog of mass models for gravitational lensing. Preprint at arxiv.org/abs/astro-ph/0102341 (2001).

  63. Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609–617 (1986).

    ADS  CAS  Google Scholar 

  64. Earl, N. et al. astropy/specutils v.1.10.0. Zenodo https://doi.org/10.5281/zenodo.7803739 (2023).

  65. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS  Google Scholar 

  66. de Graaff, A. et al. Ionised gas kinematics and dynamical masses of z 6 galaxies from JADES/NIRSpec high-resolution spectroscopy. Preprint at arxiv.org/abs/2308.09742 (2023).

  67. Prevot, M. L., Lequeux, J., Maurice, E., Prevot, L. & Rocca-Volmerange, B. The typical interstellar extinction in the Small Magellanic Cloud. Astron. Astrophys. 132, 389–392 (1984).

    ADS  CAS  Google Scholar 

  68. Bouchet, P., Lequeux, J., Maurice, E., Prevot, L. & Prevot-Burnichon, M. L. The visible and infrared extinction law and the gas-to-dust ratio in the Small Magellanic Cloud. Astron. Astrophys. 149, 330–336 (1985).

    ADS  CAS  Google Scholar 

  69. Richards, G. T. et al. Red and reddened quasars in the Sloan Digital Sky Survey. Astron. J. 126, 1131–1147 (2003).

    ADS  CAS  Google Scholar 

  70. Hopkins, P. F. et al. Dust reddening in Sloan Digital Sky Survey quasars. Astron. J. 128, 1112–1123 (2004).

    ADS  Google Scholar 

  71. Capak, P. L. et al. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission. Nature 522, 455–458 (2015).

    ADS  CAS  PubMed  Google Scholar 

  72. Reddy, N. A. et al. The MOSDEF survey: measurements of Balmer decrements and the dust attenuation curve at redshifts z ~ 1.4–2.6. Astrophys. J. 806, 259 (2015).

    ADS  Google Scholar 

  73. Reddy, N. A. et al. The HDUV survey: a revised assessment of the relationship between UV slope and dust attenuation for high-redshift galaxies. Astrophys. J. 853, 56 (2018).

    ADS  Google Scholar 

  74. Shivaei, I. et al. The MOSDEF survey: the variation of the dust attenuation curve with metallicity. Astrophys. J. 899, 117 (2020).

    ADS  CAS  Google Scholar 

  75. Salim, S. & Narayanan, D. The dust attenuation law in galaxies. Annu. Rev. Astron. Astrophys. 58, 529–575 (2020).

    ADS  CAS  Google Scholar 

  76. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS  Google Scholar 

  77. Korista, K. T. & Goad, M. R. What the optical recombination lines can tell us about the broad-line regions of active galactic nuclei. Astrophys. J. 606, 749–762 (2004).

    ADS  Google Scholar 

  78. Kennicutt Jr, R. C. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).

    ADS  Google Scholar 

  79. Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    ADS  Google Scholar 

  80. Draine, B. T. & Li, A. Infrared emission from interstellar dust. I. Stochastic heating of small grains. Astrophys. J. 551, 807–824 (2001).

    ADS  CAS  Google Scholar 

  81. Shen, Y. The mass of quasars. Bull. Astron. Soc. India 41, 61–115 (2013).

    ADS  CAS  Google Scholar 

  82. Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. Ser. 166, 470–497 (2006).

    ADS  CAS  Google Scholar 

  83. Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    ADS  Google Scholar 

  84. Pasha, I. & Miller, T. B. pysersic: a Python package for determining galaxy structural properties via Bayesian inference, accelerated with jax. J. Open Source Softw. 8, 5703 (2023).

  85. Chemerynska, I. et al. JWST UNCOVER: the overabundance of ultraviolet-luminous galaxies at z > 9. Preprint at arxiv.org/abs/2312.05030 (2023).

  86. Atek, H. et al. JWST UNCOVER: discovery of z > 9 galaxy candidates behind the lensing cluster Abell 2744. Mon. Not. R. Astron. Soc. 524, 5486–5496 (2023).

    ADS  Google Scholar 

  87. Sheth, R. K. & Tormen, G. An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier. Mon. Not. R. Astron. Soc. 329, 61–75 (2002).

    ADS  Google Scholar 

  88. Astropy Collaboration. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Google Scholar 

  89. Price-Whelan, A. M. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    ADS  Google Scholar 

  90. van der Walt, S., Colbert, S. C. & Varoquaux, G. The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).

    Google Scholar 

  91. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  93. Ofek, E. O. MAAT: MATLAB Astronomy and Astrophysics Toolbox. Astrophysics Source Code Library, record ascl:1407.005 1407.005 (ASCL.net, 2014).

Download references

Acknowledgements

We thank the anonymous referees for their comments and suggestions that helped in improving this paper. A.Z. and L.J.F. acknowledge the support from the United States–Israel Binational Science Foundation (BSF) under grant 2020750 and the US National Science Foundation (NSF) under grant 2109066, and from the Ministry of Science and Technology, Israel. H.A. and I.C. acknowledge support from the CNES, focused on the JWST mission, and the Programme National Cosmology and Galaxies (PNCG) of CNRS/INSU with INP and IN2P3, co-funded by the CEA and CNES. P.D. acknowledges support from the NWO grant 016.VIDI.189.162 (‘ODIN’) and the CO-FUND Rosalind Franklin programme of the European Commission and University of Groningen. S.F. acknowledges support from NASA through the NASA Hubble Fellowship grant HST-HF2-51505.001-A, awarded by the Space Telescope Science Institute (STScI). The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation under grant no. 140. Support for the program JWST-GO-2561 was provided through a grant from the STScI under NASA contract NAS 5-03127. This work has received funding from the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract no. MB22.00072, as well as from the Swiss National Science Foundation (SNSF) through project grant 200020_207349. This work is based on observations obtained with the NASA/ESA/CSA JWST, retrieved from the MAST at the STScI, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS 5-26555. This work is also based on observations made with ESO Telescopes at the La Silla Paranal Observatory and the ALMA, obtained from the ESO Science Archive facility. ALMA is a partnership of ESO (representing its member states), NSF (United States) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by the ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory (NRAO) is a facility of the NSF operated under a cooperative agreement by the Associated Universities. This work was made possible by using the CANDIDE cluster at the Institut d’Astrophysique de Paris, which was funded through grants from the PNCG, CNES, DIM-ACAV and the Cosmic Dawn Center and is maintained by S. Rouberol. Cloud-based data processing and file storage for this work were provided by the AWS Cloud Credits for Research programme.

Author information

Authors and Affiliations

Authors

Contributions

A.Z., J.E.G. and L.J.F. wrote the paper. L.J.F. made the figures. L.J.F. and I.L. performed the line fits. I.L. designed the program and produced the deep spectrum. R.B. and I.L. reduced the data. L.J.F. and A.Z. constructed the lens model. P.D. provided simulations to contextualize the observational results obtained. V.K. and I.L. measured the emission line strengths. I.C. ran the completeness simulations. T.B.M., D.J.S. and E.N. measured the source size. I.L. and R.B. are the principal investigators of the UNCOVER program. All authors contributed to the paper and aided the analysis and interpretation.

Corresponding author

Correspondence to Lukas J. Furtak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Michael Crenshaw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtak, L.J., Labbé, I., Zitrin, A. et al. A high black-hole-to-host mass ratio in a lensed AGN in the early Universe. Nature 628, 57–61 (2024). https://doi.org/10.1038/s41586-024-07184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07184-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing