Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling the helicity of light by electrical magnetization switching

An Author Correction to this article was published on 12 April 2024

This article has been updated


Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2,3,4,5,6,7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin–orbit torque8,9,10,11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin–photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space–light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of SOT spin-LED.
Fig. 2: SOT switching injector magnetization.
Fig. 3: Polarization-resolved electroluminescence characterization and electrical control of circular polarization of spin-LEDs.

Similar content being viewed by others

Data availability

All data generated and analysed in this work are available in a Zenodo repository (

Change history


  1. Waser, R. (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 3rd edn (Wiley-VCH, 2012).

  2. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  3. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  ADS  Google Scholar 

  4. Giba, A. E. et al. Spin injection and relaxation in p-doped (In,Ga)As/GaAs quantum-dot spin light-emitting diodes at zero magnetic field. Phys. Rev. Appl. 14, 034017 (2020).

    Article  ADS  CAS  Google Scholar 

  5. Liang, S. H. et al. Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector. Phys. Rev. B 90, 085310 (2014).

    Article  ADS  CAS  Google Scholar 

  6. Gerhardt, N. C. et al. Electron spin injection into GaAs from ferromagnetic contacts in remanence. Appl. Phys. Lett. 87, 032502 (2005).

    Article  ADS  Google Scholar 

  7. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  9. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Mishra, R., Kim, T., Park, J. & Yang, H. Shared-write-channel-based device for high-density spin-orbit-torque magnetic random-access memory. Phys. Rev. Appl. 15, 024063 (2021).

    Article  ADS  CAS  Google Scholar 

  12. Lindemann, M. et al. Ultrafast spin-lasers. Nature 568, 212–215 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Miller, D. A. B. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35, 346–396 (2017).

    Article  ADS  CAS  Google Scholar 

  14. Sandvine. The Global Internet Phenomena Report: COVID-19 Spotlight (2020).

  15. Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 561, 163–166 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Dery, H. et al. Spintronic nanoelectronics based on magneto-logic gates. IEEE Trans. Electron. Dev. 59, 259–262 (2012).

    Article  ADS  CAS  Google Scholar 

  17. Vagionas, C. et al. Optical memory architectures for fast routing address look-up (AL) table operation. J. Phys. Photon. 1, 044005 (2019).

    Article  Google Scholar 

  18. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Zhan, X. et al. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv. Mater. 33, 202104418 (2021).

    Article  Google Scholar 

  20. Nishizawa, N. & Munekata, H. Lateral-type spin-photonics devices: development and applications. Micromachines 12, 644–675 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Žutić, I. et al. Spin-lasers: spintronics beyond magnetoresistance. Solid State Commun. 316–317, 113949 (2020).

    Article  Google Scholar 

  23. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, I. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Marin, J. F. G. et al. Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED. Nat. Commun. 13, 4884 (2022).

    Article  ADS  Google Scholar 

  25. Nishizawa, N., Nishibayashi, K. & Munekata, H. A spin light emitting diode incorporating ability of electrical helicity switching. Appl. Phys. Lett. 104, 111102 (2014).

    Article  ADS  Google Scholar 

  26. Yokota, N., Nisaka, K., Yasaka, H. & Ikeda, K. Spin polarization modulation for high-speed vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 113, 171102 (2018).

    Article  ADS  Google Scholar 

  27. Sinova, J. & Žutić, I. New moves of the spintronics tango. Nat. Mater. 11, 368–371 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Holub, M., Shin, J., Saha, D. & Bhattacharya, P. Electrical spin injection and threshold reduction in a semiconductor laser. Phys. Rev. Lett. 98, 146603 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Tsymbal, E. Y. & Žutić, I. Spintronics Handbook: Spin Transport and Magnetism 2nd edn (CRC Press, Boca Raton, FL, 2019).

  30. Jhuria, K. et al. Spin–orbit torque switching of a ferromagnet with picosecond electrical pulses. Nat. Electron. 3, 680–686 (2020).

    Article  Google Scholar 

  31. Li, H. et al. Field-free deterministic magnetization switching with ultralow current density in epitaxial Au/Fe4N bilayer films. ACS Appl. Mater. Interfaces 11, 16965–16971 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. van den Brink, A. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    Article  ADS  PubMed  Google Scholar 

  34. Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

    Article  Google Scholar 

  35. Fang, C. et al. Observation of the fluctuation spin Hall effect in a low-resistivity antiferromagnet. Nano Lett. 23, 11485–11492 (2023).

  36. Lee, S. et al. Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching. Commun. Phys. 4, 234 (2021).

    Article  Google Scholar 

  37. Xie, H. et al. Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures. Chin. Phys. 32, 037502 (2023).

    Article  ADS  Google Scholar 

  38. Kumar, S. & Kumar, S. Ultrafast THz probing of nonlocal orbital current in transverse multilayer metallic heterostructures. Nat. Commun. 14, 8185 (2023).

  39. Zhang, C. et al. Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO. Appl. Phys. Lett. 103, 262407 (2013).

    Article  ADS  Google Scholar 

  40. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Rahaman, S. Z. et al. Pulse-width and temperature effect on the switching behavior of an etch-stop-on-MgO-barrier spin-orbit torque MRAM cell. IEEE Electron Device Lett. 39, 1306–1309 (2018).

    Article  ADS  CAS  Google Scholar 

  42. Zhang, X., Vernier, N., Zhao, W., Vila, L. & Ravelosona, D. Extrinsic pinning of magnetic domain walls in CoFeB-MgO nanowires with perpendicular anisotropy. AIP Adv. 8, 056307 (2018).

    Article  ADS  Google Scholar 

  43. Barate, P. et al. Bias dependence of the electrical spin injection into GaAs from Co–Fe–B/MgO injectors with different MgO growth processes. Phys. Rev. Appl. 8, 054027 (2017).

    Article  ADS  Google Scholar 

  44. Iba, S., Koh, S., Ikeda, K. & Kawaguchi, H. Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells. Appl. Phys. Lett. 98, 081113 (2011).

    Article  ADS  Google Scholar 

  45. Frougier, J. et al. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers. Appl. Phys. Lett. 103, 252402 (2013).

    Article  ADS  Google Scholar 

  46. Diamanti, E., Lo, H.-K., Qi, B. & Yuan, Z. Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016).

    Article  Google Scholar 

  47. Žutić, I., Matos-Abiague, A., Scharf, B., Dery, H. & Belashchenko, K. Proximitized materials. Mater. Today 22, 85–107 (2019).

    Article  Google Scholar 

  48. Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Belhadj, T. et al. Controlling the polarization eigenstate of a quantum dot exciton with light. Phys. Rev. Lett. 103, 086601 (2009).

    Article  ADS  PubMed  Google Scholar 

  50. Braun, P. F. et al. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett. 94, 116601 (2005).

    Article  ADS  PubMed  Google Scholar 

  51. Tao, B. et al. Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence. Nanoscale 10, 10213–10220 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Cadiz, F. et al. Electrical initialization of electron and nuclear spins in a single quantum dot at zero magnetic field. Nano Lett. 18, 2381–2386 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Lu, Y. et al. Depth analysis of boron diffusion in MgO/CoFeB bilayer by X-ray photoelectron spectroscopy. J. Appl. Phys. 108, 043703 (2010).

    Article  ADS  Google Scholar 

  54. Liu, B. et al. Spin injection probed by combined optical and electrical techniques in spin-LED. Phys. Status. Solidi. (c) 1, 475–478 (2004).

    Article  ADS  CAS  Google Scholar 

  55. Lee, K.-M., Choi, J. W., Sok, J. & Min, B.-C. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO. AIP Adv. 7, 065107 (2017).

    Article  ADS  Google Scholar 

  56. Huang, S. X., Chen, T. Y. & Chien, C. L. Spin polarization of amorphous CoFeB determined by point-contact Andreev reflection. Appl. Phys. Lett. 92, 242509 (2008).

    Article  ADS  Google Scholar 

  57. Barate, P. et al. Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods. Appl. Phys. Lett. 105, 012404 (2014).

    Article  ADS  Google Scholar 

  58. Butler, W. H., Zhang, X.-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article  ADS  Google Scholar 

  59. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Lu, Y. et al. Spin-orbit coupling effect by minority interface resonance states in single-crystal magnetic tunnel junctions. Phys. Rev. B 86, 184420 (2012).

  62. Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references


We acknowledge B. Tao, S. Liang, A. Djeffal, T. H. Pham, J.-Y. Chen and M. Hehn for their contribution to the previous development of spin injectors. We thank S. Suire and C. Robert for their assistance with electroluminescence setups and L. Pasquier, O. Lerbert and D. Pierre for their help with MBE maintenance. We also acknowledge D. Crete for the discussion of the shunting problem. We appreciate the discussions on SOT spin-LEDs with A. Fert and Z.-G. Wang. We thank M. Hofmann for his support with the time-resolved photoluminescence measurements. This work is supported by the French National Research Agency (ANR) SOTspinLED project (no. ANR-22-CE24-0006-01), by the German Research Foundation (DFG) within the Reinhart-Koselleck-Project (no. 490699635), by the US National Science Foundation (NSF) Electrical, Communications and Cyber Systems grant no. 2130845 (I.Ž. for LEDs) and by the US Department of Energy (DOE) Office of Science Basic Energy Sciences (BES) award no. DE-SC0004890 (I.Ž. for SOT). This work is also partially financially supported by the National Natural Science Foundation of China (NSFC, grant no. 12134017). J.-P.W. thanks the partial support from the Robert Hartmann Endowed Chair Professorship and the National Science Foundation SHF: Small: Collaborative Research: Energy efficient strain-assisted spin transfer torque memory. We thank the French RENATECH network for the support of semiconductor growth and partial support from ‘Lorraine Université d’Excellence’ project (no. ANR-15-IDEX-04-LUE). The experiments were performed using equipment from the CC-DAUM, CC-MINALOR, CC-3M and CC-MAGCRYO platforms funded by FEDER (EU), ANR, the Region Lorraine and the metropole of Grand Nancy.

Author information

Authors and Affiliations



Y.L. coordinated the research project. Y.L., P.A.D., J.-M.G., H.J., A.L. and M.M. conceived the sample structure. P.A.D., A.B., P.P., M.V. and J.-P.W. contributed to the fabrication of the spin injector. M.M., B.X. and A.L. grew the LED structure. P.A.D., P.R., L.L., D.L., M.S., G.C. and H.R. contributed to the electroluminescence characterizations. M.L. and N.C.G. carried out the TRPL characterizations. P.A.D., N.F.P., T.C., T.M., J.-M.G., H.J. and J.-C.R.S. characterized the magnetization switching of the spin injector. N.F.P. and P.A.D. performed the Kerr microscopy measurements. X.D. and P.A.D. performed the TEM characterizations. Y.L., I.Ž. and N.C.G. prepared the paper, with the help of P.A.D., X.D., P.R., X.M., M.C.B., H.J., J.-P.W., S.M. and X.H. All authors analysed the data, discussed the results and commented on the paper.

Corresponding author

Correspondence to Yuan Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Interfacial structure and chemical characterization of the spin injector.

a, Large-scale HR-STEM HAADF image showing a good homogeneity of the QD spin-LED multilayer structure. b, Enlarged HR-STEM BF image showing the injector multilayer structure. c, Maps for individual elements drawn from processed EELS spectrum images. d, Elemental profiles extracted from the maps of elements. The colors of the profile lines are consistent with the colors of the elemental maps in c.

Extended Data Fig. 2 RAHE of spin injector with a reversal of the in-plane Hx (compared to Fig. 2b in the main text).

RAHE of spin injector as a function of pulsed current, Ipulse, with the duration of tpulse = 0.1 s, at different temperatures with a small in-plane field Hx = +10 mT.

Extended Data Fig. 3 Polarization-resolved electroluminescence characterization of spin-LEDs.

a, Pc of the SOT spin-LED under bias, Vbias = +3.5 V (dashed lines with symbols) as a function of the out-of-plane magnetic field, Hz, and the corresponding SQUID hysteresis loop (blue solid line) measured at 300 K, respectively. The insets show the EL spectra measured at zero field, where Hz = ±0 T indicate that the sample M is first saturated by Hz = ±15 mT, respectively. b, Pc(T) of a standard spin-LED at a fixed Vbias = 3.5 V and Hz = 0 T. c, T dependence of τ and τs measured from the TRPL characterization, while the T dependence of the F factor is deduced from 1/(1+τ/τs). The error bars shown in (c) result from the fits of the time transients (see Extended Data Fig. 9).

Extended Data Fig. 4 Bias dependence of circular polarization measured in the SOT spin-LED.

a–e, EL spectra of the SOT spin-LED measured at 300 K and Hz = 0 T, with Vbias: (a) 1.7 V, (b) 2.26 V, (c) 2.4 V, (d) 2.88 V, (e) 3.1 V. f, Pc as a function of Vbias at 300 K and Hz = 0 T, for the SOT spin-LED.

Extended Data Fig. 5 Temperature dependence of circular polarization measured in the standard spin-LED.

a–f, EL spectra of the standard spin-LED measured at Hz = 0 T, with Vbias = 3.5 V and different T. (a) 10 K, (b) 100 K, (c) 150 K, (d) 200 K, (e) 250 K, (f) 300 K.

Extended Data Fig. 6 Repetition measurement of Pc at 300 K after different number of switching.

EL spectra of the SOT spin-LED measured at Hz = 0 T and Vbias = 3.5 V with a repetition of a single pulsed current M switching. a, First switching, b, 10th switching, c, 19th switching, d, 28th switching, e, 37th switching, and f, 46nd switching.

Extended Data Fig. 7 Stability of the ferromagnet/semiconductor Schottky interface after magnetization switching.

I−Vbias curves of the SOT spin-LED measured before and after the repetition switching at 300 K.

Extended Data Fig. 8 Pc loop as a function of pulsed switching current.

a, Pc loop as a function of the switching pulsed current, Ipulse, measured at 300 K. Each M switching is at Hx = +10 mT. b-h, EL spectra of the SOT spin-LED measured at Hz = 0 T and Vbias = 3.5 V after M switching corresponding to each point numbered in (a). For one loop, it starts from (b) +25 mA to (c) −15 mA, (d) −18 mA, (e) −25 mA, (f) −15 mA, (g) +18 mA, and (h) +20 mA.

Extended Data Fig. 9 Time-resolved photoluminescence and the extraction of spin and carrier lifetimes.

a, Typical PL intensity mapping at 100 K for QD LEDs as a function of time and photon wavelength. b, QD TRPL intensity evolution for the Sσ+ and Sσ components measured at 300 K. c, Determination of τ from the exponential fit of the decay time for the PL intensity (Sσ+ + Sσ). d, Determination of τs from the exponential fit of the decay time of Pc. The error bars shown in (c,d) result from the fits of the time transients.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, including Supplementary Figs 1–8 and Supplementary Tables 1 and 2, and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dainone, P.A., Prestes, N.F., Renucci, P. et al. Controlling the helicity of light by electrical magnetization switching. Nature 627, 783–788 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing