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A concerted neuron–astrocyte program 
declines in ageing and schizophrenia

Emi Ling1,2 ✉, James Nemesh1,2, Melissa Goldman1,2, Nolan Kamitaki1,2,3, Nora Reed1,2, 
Robert E. Handsaker1,2, Giulio Genovese1,2, Jonathan S. Vogelgsang4,5, Sherif Gerges1,2, 
Seva Kashin1,2, Sulagna Ghosh1,2, John M. Esposito4, Kiely Morris4, Daniel Meyer1,2, 
Alyssa Lutservitz1,2, Christopher D. Mullally1,2, Alec Wysoker1,2, Liv Spina1,2, Anna Neumann1,2, 
Marina Hogan1,2, Kiku Ichihara1,2, Sabina Berretta1,4,5,6,7 ✉ & Steven A. McCarroll1,2,7 ✉

Human brains vary across people and over time; such variation is not yet understood 
in cellular terms. Here we describe a relationship between people’s cortical neurons 
and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the 
prefrontal cortex of 191 human donors aged 22–97 years, including healthy individuals 
and people with schizophrenia. Latent-factor analysis of these data revealed that, in 
people whose cortical neurons more strongly expressed genes encoding synaptic 
components, cortical astrocytes more strongly expressed distinct genes with synaptic 
functions and genes for synthesizing cholesterol, an astrocyte-supplied component  
of synaptic membranes. We call this relationship the synaptic neuron and astrocyte 
program (SNAP). In schizophrenia and ageing—two conditions that involve declines  
in cognitive flexibility and plasticity1,2—cells divested from SNAP: astrocytes, 
glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed 
reduced SNAP expression to corresponding degrees. The distinct astrocytic and 
neuronal components of SNAP both involved genes in which genetic risk factors for 
schizophrenia were strongly concentrated. SNAP, which varies quantitatively even 
among healthy people of similar age, may underlie many aspects of normal human 
interindividual differences and may be an important point of convergence for multiple 
kinds of pathophysiology.

In natural, non-laboratory settings—in which individuals have diverse 
genetic inheritances, environments and life histories, as humans do—
almost all aspects of biology exhibit quantitative variation across  
individuals3. Natural variation makes it possible to observe a biological 
system across many contexts and potentially learn underlying princi-
ples that govern its function4,5.

Here we sought to recognize changes that multiple cell types in the 
human brain characteristically implement together. The need to be 
able to recognize tissue-level gene-expression programs comes from 
a simple but important idea in the physiology of the brain and other 
tissues: cells of different types collaborate to perform essential func-
tions, working together to construct and regulate structures such as 
synaptic networks.

We analysed the prefrontal cortex of 191 human brain donors using 
single-nucleus RNA sequencing (snRNA-seq) and developed a com-
putational approach, based on latent-factor analysis, to recognize 
commonly recurring multicellular gene-expression patterns in such 
data. Tissue-level programs of which the expression varies across 
individuals could provide new ways to understand healthy brain 
function and also brain disorders, as disease processes probably act 
through endogenous pathways and programs in cells and tissues. 

A longstanding challenge in genetically complex brain disorders is 
to identify the aspects of brain biology on which disparate genetic 
effects converge; here we applied this idea to try to better understand  
schizophrenia.

snRNA-seq analysis of the dlPFC
We analysed the dorsolateral prefrontal cortex (dlPFC; Brodmann 
area 46), which serves working memory, attention, executive func-
tions and cognitive flexibility6, abilities that decline in schizophrenia 
and with advancing age1,2. Analyses included frozen post-mortem 
dlPFC samples from 191 donors (aged 22–97 years, median 64 years), 
including 97 without known psychiatric conditions and 94 affected by 
schizophrenia (Extended Data Fig. 1 and Supplementary Table 1). To 
generate data that were well controlled across donors and therefore 
amenable to integrative analysis, we processed a series of 20-donor 
sets of dlPFC tissue, each as a single pooled sample (or village7; 
Fig. 1a) and then, during computational analysis, we used combina-
tions of many transcribed single-nucleotide polymorphisms (SNPs) 
to identify the source donor of each nucleus (Fig. 1a,b and Extended  
Data Fig. 2).
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Each of the 1,217,965 nuclei was classified into one of seven cell 
types—glutamatergic neurons (43% of all nuclei), GABAergic neu-
rons (20%), astrocytes (15%), oligodendrocytes (12%), polydendro-
cytes (oligodendrocyte progenitor cells, 5.5%), microglia (3.6%) 
and endothelial cells (1.3%) (Fig. 1c and Supplementary Fig. 1)—as 

well as neuronal subtypes defined in earlier taxonomies (Fig. 1d,e 
and Supplementary Figs. 2 and 3). Each donor contributed nuclei 
of all types and subtypes (Supplementary Figs. 1, 4 and 5), although 
subsequent analyses excluded 11 atypical samples (Supplementary  
Fig. 1d).
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Fig. 1 | Identification of concerted multicellular gene-expression  
changes common to schizophrenia and ageing. a, Generation of snRNA-seq 
data, in a series of 20-donor ‘villages’. The diagram was created using images  
by thekua (person icon), B. Lachner (laboratory tools) and pnx (brain exterior 
side view) under a Creative Commons licence CC0 1.0. b, Uniform manifold 
approximation and projection (UMAP; coloured by donor) analysis of the RNA- 
expression profiles of 1,217,965 nuclei analysed from 191 donors. c, Assignments 
of nuclei to cell types (same projection as in b). d,e, Assignments of nuclei to 
glutamatergic (n = 524,186) (d) and GABAergic (n = 238,311) (e) neuron subtypes. 
CT, corticothalamic; ET, extratelencephalic; IT, intratelencephalic; NP, near- 
projecting. f, Latent factor analysis. Cell-type-resolution expression data from 
all donors and cell types were combined into a single analysis. Latent factor 
analysis identified constellations of gene-expression changes that consistently 
appeared together. g, The cell type specificity of the latent factors inferred 
from 180 donors, shown as the cell type distributions of the 1,000 most strongly 

loading gene–cell type combinations per factor. Factors 4–7 and 10 are strongly 
driven by gene-expression co-variation spanning multiple cell types. h, The 
association of schizophrenia (SCZ) with interindividual variation in the 
expression levels of the ten latent factors in g, shown as a quantile–quantile 
plot comparing the observed schizophrenia associations with the ten factors  
(−log10[P]) to the distribution of association statistics expected by chance; only 
LF4 significantly associated with schizophrenia. See also Supplementary Fig. 6. 
i, The relationship between quantile-normalized LF4 donor expression levels 
and age (Spearman’s ρ; n = 180 donors). The shaded regions represent the 95% 
confidence intervals. j, Quantile-normalized LF4 donor scores (n = 93 controls, 
87 cases), adjusted for age. The P value was calculated using a two-sided 
Wilcoxon rank-sum test. For the violin plot, the box limits show the interquartile 
range, the whiskers show 1.5× the interquartile interval, the centre lines show 
the median values and the notches show the confidence intervals around the 
median values.
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Inference of multicellular gene programs
The data revealed substantial interindividual variation in cell-type- 
specific gene expression levels, with highly expressed genes in each 
cell type exhibiting a median coefficient of variation (across donors) 
of about 15%.

Interindividual variation in gene expression almost certainly arises 
from cell-type-specific gene-expression programs, and could in prin-
ciple also be shaped by concerted changes in multiple cell types. To 
identify such relationships, we applied latent factor analysis, a form 
of machine learning that infers underlying factors from the tendency 
of many measurements to fluctuate together8. Critically, we analysed 
cell-type-resolution data from all cell types at once, using interindi-
vidual variation to enable the recognition of relationships between 
expression patterns in different cell types (Fig. 1f). Each inferred factor 
was defined by a set of gene-by-cell-type loadings (revealing the distinct 
genes it involves in each cell type) and a set of expression levels (of the 
factor) in each donor (Fig. 1f).

Ten latent factors together explained 30% of interindividual variation 
in gene expression levels; these factors appeared to be independent 
of one another in their gene use patterns (loadings) and their expres-
sion levels across the individual donors (Extended Data Fig. 3a–d). 
Interindividual variation in the factors’ inferred expression levels arose 
from interindividual variation within each 20-donor experimental 
set (Extended Data Fig. 3e). Each factor was primarily driven by gene 
expression in one or a few cell types (Fig. 1g).

Schizophrenia was associated with just one of these latent factors 
(LF4) (Fig. 1h, Extended Data Fig. 4a–e and Supplementary Table 2)—a 
factor that was also associated with donor age (Fig. 1i). Donors with 
and without schizophrenia both exhibited the decline in LF4 with age 
(Fig. 1i and Extended Data Fig. 1c,d). Joint regression analysis confirmed 
independent decreases in LF4 expression by age and in schizophrenia, 
and detected no effect of sex (Supplementary Table 3).

Factors similar to LF4 emerged in all analyses testing LF4’s robustness 
to analysis parameters (Supplementary Fig. 6). The LF4 expression 
scores of individuals also did not correlate with medication use, time 
of day at death, post-mortem interval or sequencing depth (Extended 
Data Fig. 4f–k). We also found evidence that the LF4 constellation of 
gene-expression changes manifests at the protein level (Supplemen-
tary Fig. 7).

Neuronal and astrocyte genes driving LF4
Of the 1,000 gene/cell-type expression traits with the strongest LF4 
loadings, 99% involved gene expression in glutamatergic neurons (610), 
GABAergic neurons (125) or astrocytes (253) (Fig. 1g). LF4 involved 
similar genes and expression effect directions in glutamatergic and 
GABAergic neurons, but a distinct set of genes and effect directions 
in astrocytes (Fig. 2a and Extended Data Fig. 4l). To identify biological 
processes in LF4, we applied gene set enrichment analysis (GSEA)9 to 
the LF4 gene loadings, separately for each cell type.

In both glutamatergic and GABAergic neurons, LF4 involved 
increased expression of genes with synaptic functions (Fig. 2b, 
Extended Data Fig.  4m and Supplementary Table  4). The most 
strongly enriched synaptic annotations for both glutamatergic and 
GABAergic neurons involved the synaptic vesicle cycle and the pre-
synaptic compartment; the core genes driving these enrichments 
encoded components of the SNARE complex and their interaction 
partners (STX1A, SNAP25 and SYP), effectors and regulators of syn-
aptic vesicle exocytosis (SYT11, RAB3A and RPH3A) and other synap-
tic vesicle components (SV2A and SYN1). In glutamatergic neurons, 
LF4 also appeared to involve genes encoding postsynaptic com-
ponents, including signalling proteins (PAK1, GSK3B and CAMK4) 
and ion channels and receptors (CACNG8, KCNN2, CHRNB2, GRM2  
and GRIA3).

People with schizophrenia and people of advanced age exhibited 
reduced levels of synapse-related gene expression by cortical neurons 
of all types (Fig. 2c and Extended Data Fig. 5).

In astrocytes, LF4 involved gene-expression effects distinct from 
those in neurons (Fig. 2a and Extended Data Fig. 4l). Gene sets with 
roles in fatty acid and cholesterol biosynthesis and export, includ-
ing genes encoding the SREBP1 and SREBP2 transcription factors and 
their regulators and targets, were positively correlated with LF4 and 
underexpressed in the cortical astrocytes of donors with schizophrenia 
(Fig. 2d and Supplementary Table 4) or advanced age (Extended Data 
Fig. 6a). These effects appeared to be specific to astrocytes relative to 
other cell types (Extended Data Fig. 7).

Concerted neuron–astrocyte expression
To understand these results in terms of specific biological activities, we 
focused on gene sets corresponding to neuronal synaptic components 
and three kinds of astrocyte activities: adhesion to synapses, uptake 
of neurotransmitters and cholesterol biosynthesis (see the ‘Selected 
gene sets’ section of the Methods).

The proportion of astrocyte gene expression devoted to each of these 
three astrocyte activities was strongly correlated with the proportion 
of neuronal gene expression devoted to synaptic components (Fig. 2e 
and Supplementary Fig. 8), even after adjusting for age and case– 
control status (Extended Data Fig. 8). Donors with schizophrenia, as 
well as donors with advanced age, tended to have reduced expression 
of these genes (Fig. 2e and Extended Data Fig. 6).

As this gene expression program involves concerted effects on the 
expression of (distinct) genes for synaptic components in neurons 
and astrocytes, we call it SNAP, although it also involves genes with 
unknown functions and involves more modest expression effects in 
additional cell types. We used the LF4 expression scores of donors to 
measure SNAP expression.

Astrocyte gene programs and SNAP
To better appreciate the astrocytic contribution to SNAP, we further 
analysed the RNA-expression data from 179,764 individual astrocytes. 
The analysis readily recognized a known, categorical distinction among 
three subtypes of adult cortical astrocytes: protoplasmic astrocytes, 
which populate the grey matter and were the most abundant subtype; 
fibrous astrocytes; and interlaminar astrocytes (Fig. 3a and Extended 
Data Fig. 9a–d). Neither schizophrenia nor age were associated with 
variation in the relative abundances of these subtypes (Extended Data 
Fig. 9e,f).

We next identified latent factors that collectively explained 25% of 
quantitative gene-expression variation among individual astrocytes 
(using consensus non-negative matrix factorization (cNMF)10, which 
better scaled to the single-cell-level data) (Extended Data Fig. 10a,b). 
The factors appeared to capture diverse biological activities, including 
translation (cNMF1); zinc and cadmium ion homeostasis (cNMF7); and 
inflammatory responses (cNMF8) (Supplementary Table 5). One factor 
(cNMF2) corresponded to the astrocyte component of SNAP (Extended 
Data Fig. 10c–e and Supplementary Table 6); the strong co-expression 
relationships in SNAP were therefore robust to the computational 
approach used (Extended Data Fig. 10c–e and Supplementary Fig. 9).

As cNMF2 is informed by variation in the single-astrocyte expres-
sion profiles, we consider it a more precise description of the 
astrocyte-specific gene-expression effects in SNAP, and refer to it here 
as SNAP-a. Across donors, the average astrocyte expression of SNAP-a 
was associated even more strongly with schizophrenia case–control 
status and with age (Fig. 3b–e and Extended Data Fig. 10f–i).

The strongest positive gene-set associations to SNAP-a involved 
adhesion to synaptic membranes and intrinsic components of synap-
tic membranes (Supplementary Table 5). The 20 genes most strongly 
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Fig. 2 | Genes recruited by SNAP in neurons and astrocytes. a, Comparisons 
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identifier (UMI) per 105) in both cell types in the comparison (Spearman’s ρ; 
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FDR, false-discovery rate. c, The fraction of gene expression (UMIs) devoted  
to synaptic-vesicle-cycle genes in subtypes of glutamatergic and GABAergic 
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associated with SNAP-a (Supplementary Fig. 10) included eight genes 
with roles in adhesion of cells to synapses (NRXN1, NTM, CTNND2, 
LSAMP, GPM6A, LRRC4C, LRRTM4 and EPHB1) (reviewed previously11,12). 
SNAP-a also appeared to strongly recruit genes encoding synaptic 
neurotransmitter reuptake transporters: SLC1A2 and SLC1A3 (encoding 

glutamate transporters EAAT1 and EAAT2) and SLC6A1 and SLC6A11 
(encoding GABA transporters GAT1 and GAT3) were all among the 1% 
of genes most strongly associated with SNAP-a.

We sought to relate SNAP-a to an emerging appreciation of astrocyte 
heterogeneity and its basis in gene expression13. An earlier analysis of 
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Fig. 3 | Biological states and transcriptional programs of astrocytes and  
L5 IT glutamatergic neurons in schizophrenia. a–c, UMAP analysis of RNA 
expression patterns from 179,764 astrocyte nuclei from 180 donors. Nuclei are 
coloured by astrocyte subtype (a), schizophrenia affected/unaffected status 
(b) and expression of the astrocyte component of SNAP (SNAP-a) (c). d, The 
relationship between donor quantile-normalized SNAP-a expression scores 
and age (Spearman’s ρ). n = 180 donors. The shaded regions represent the 95% 
confidence intervals. e, The distributions of SNAP-a donor scores (age adjusted 
and quantile normalized) for people with and without schizophrenia. n = 93 
controls, 87 cases. The P value was calculated using a two-sided Wilcoxon 
rank-sum test. For the box plots, the box limits show the interquartile range, the 
whiskers show 1.5× the interquartile interval, the centre line shows the median 

value and the notches show the confidence intervals around the median values. 
f–j, Similar plots to those in a–e, respectively, but for the L5 IT glutamatergic 
neuron contribution to SNAP (SNAP-n). n = 75,929 nuclei. Exc, excitatory 
neuron subtype. k, Variation in the expression levels across 180 individual 
persons (columns, ordered from left to right by SNAP expression levels) of a 
select set of strongly SNAP-recruited genes (rows) in astrocytes (left panel) and 
L5 IT glutamatergic neurons (right panel) of the 180 brain donors. One set of 
genes (SNAP-a; top) exhibits co-regulation in astrocytes; and a distinct set of 
genes (SNAP-n; bottom) exhibits co-regulation in neurons. Genes indicated  
by asterisks and hashes are at genomic loci associated with common and rare 
genetic variation in schizophrenia, respectively22. The grey bars indicate that 
regulon activity was not detected.
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astrocyte molecular and morphological diversity in mice identified 
gene-expression modules based on their co-expression relation-
ships14. SNAP-a exhibited the strongest overlap (P = 3.5 × 10−4, q = 0.015, 
gene set enrichment analysis (GSEA)) (Supplementary Table 5) with 
the module that had correlated most closely with the size of the terri-
tory covered by astrocyte processes (the turquoise module in ref. 14,  
with overlap driven by genes including EZR and NTM). A potential 
interpretation is that SNAP-a supports these perisynaptic astrocytic 
processes15.

Earlier studies identified reactive astrocyte states that are induced 
by strong experimental perturbations and injuries, and were des-
cribed as polarized cell states16. We found that more than half of the 
human orthologues of markers for these states were expressed at 
levels that correlated negatively and in a continuous, graded manner 
with SNAP-a expression (Extended Data Fig. 11). At the single-astrocyte 
level, SNAP-a expression exhibited continuous, quantitative variation 
rather than discrete state shifts (Extended Data Fig. 10f,g), consistent 
with observations of abundant astrocyte biological variation less 
extreme than experimentally polarized states17.

We performed an analogous cNMF analysis on the RNA-expression 
profiles of 75,929 glutamatergic neurons, focusing on a single, abun-
dant subtype so that the variation among individual cells would be 
driven primarily by dynamic cellular programs rather than by sub-
type identity (Fig. 3f). One factor corresponded to the neuronal gene- 
expression effects of SNAP; we refer to this factor as SNAP-n (Fig. 3g–j 
and Supplementary Table 7). Like SNAP-a, the average expression of 
SNAP-n was associated with age and with schizophrenia (Fig. 3i,j). 
SNAP-n and SNAP-a were associated with each other still more strongly, 
even in a control-only age-adjusted analysis, highlighting the close 
coupling of neuronal and astrocyte gene expression (Extended Data 
Fig. 12). Although SNAP-n was associated with synaptic gene sets, the 
specific genes driving these enrichments were distinct from those driv-
ing SNAP-a (Fig. 3k, Supplementary Fig. 11 and Supplementary Table 8).

Expression of SNAP-a and SNAP-n was associated with the expression 
of many transcription factors and their predicted targets, and engaged 
distinct pathways in astrocytes and neurons (Fig. 3k and Extended 
Data Figs. 12c and 13b): for example, SREBP1 and its well-known tran-
scriptional targets18 in astrocytes, and JUNB (AP-1) and its well-known 
targets19,20 in neurons (Extended Data Fig. 14) (the latter may reflect aver-
age neuronal activity levels in the PFC, which neuroimaging has found 
to decline (hypofrontality) in schizophrenia21). SNAP-a expression in 
astrocytes was also associated with a RORB regulon (underexpressed in 
SNAPlow donors) and a KLF6 regulon (overexpressed in SNAPlow donors) 
(Fig. 3k and Extended Data Fig. 13b); common genetic variation at RORB 
and KLF6 is associated with schizophrenia22.

Schizophrenia genetics and SNAP
A key question when studying disease through human post-mortem 
tissue is whether observations involve disease-causing/disease- 
exacerbating processes, or reactions to disease circumstances such 
as medications. We found no relationship between SNAP expres-
sion and donor use of antipsychotic medications (Extended Data 
Fig. 4j,k), or between cholesterol-biosynthesis gene expression in 
astrocytes and donor statin intake (Extended Data Fig. 7b), but this 
does not exclude the possibility that astrocytes are primarily reacting 
to disease-associated synaptic hypofunction in neurons, as opposed 
to contributing to such hypofunction.

Human genetic data provide more powerful evidence, as inherited 
alleles affect risk or exacerbate disease processes rather than being 
caused by disease. We therefore sought to evaluate the extent to which 
SNAP-a and SNAP-n involved genes and alleles implicated by genetic 
studies of schizophrenia.

Previous research22–24 found that genes expressed most strongly by 
neurons (relative to other cell types), but not genes expressed most 

strongly by glia, are enriched for the genes implicated by genetic analy-
ses in schizophrenia22–24; we replicated these findings in our data (Fig. 4a 
and Supplementary Note). However, such analyses treat cell types as 
fixed levels of gene expression (cell identities), rather than as collec-
tions of dynamic transcriptional activities; SNAP-a involves a great 
many genes that are also strongly expressed in other cell types.

We found that the genes that are dynamically recruited by SNAP-a 
in astrocytes were enriched in genetic signals for schizophrenia: they 
were 14 times more likely than other protein-coding genes to reside at 
genomic loci implicated by common genetic variation in schizophrenia 
(P = 5 × 10−25, 95% confidence interval = 8.7–24, logistic regression) 
and 7 times more likely to have strong evidence from rare variants in 
schizophrenia (95% confidence interval = 2.3–21, P = 5 × 10−4, logistic 
regression) (Supplementary Note).

To evaluate whether common variation in the genes recruited by 
SNAP-a contributes more broadly to schizophrenia risk, beyond these 
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strongest associations, we used gene-level association statistics from 
the largest schizophrenia genome-wide association study to date22,25. 
As expected, the strongest neuron-identity genes (as defined in the 
earlier work) exhibited elevated schizophrenia association, whereas 
the strongest astrocyte-identity genes did not (Fig. 4a and Supple-
mentary Note). However, in the same analysis, the genes most strongly 
associated with SNAP-a and SNAP-n were highly significant as addi-
tional predictive factors, particularly the genes associated with SNAP-a 
(Fig. 4a). Analysis by linkage disequilibrium (LD) score regression26 also 
confirmed enrichment of schizophrenia risk factors among SNAP-a 
genes (Supplementary Fig. 12).

Polygenic risk involves thousands of common alleles across the 
genome, of which the effects converge on unknown biological pro-
cesses. A polygenic risk score for schizophrenia was associated with 
reduced expression of SNAP but not with the other latent factors 
(Fig. 4b and Supplementary Fig. 13). Higher polygenic risk was also 
associated with a greater decrease in SNAP among people with schizo-
phrenia (Fig. 4b).

To better understand such relationships, we examined the relation-
ship between SNAP-a and genetic risk through two specific genes: 
neurexin-1 (NRXN1) and complement component 4 (C4).

Exonic deletions within NRXN1 greatly increase the risk for schizo-
phrenia27,28. Our data indicate that astrocytic, but not neuronal, NRXN1 
expression was reduced in people with schizophrenia and among peo-
ple aged over 70 years (Fig. 4c and Extended Data Fig. 15a,b). Interindi-
vidual variation in astrocytic NRXN1 expression was strongly associated 
with SNAP-a (Fig. 4d).

An increased copy number of the complement component 4 (C4A) 
gene more modestly increases the risk for schizophrenia29; however, 
far more interindividual variation in C4 gene expression (>80%) arises 
from unknown, dynamic effects on C4 expression29,30. We found that 
astrocytes, rather than neurons or microglia, are the main site of C4 
(including C4A and C4B) RNA expression in the human prefrontal cortex 
(Fig. 4e and Extended Data Fig. 15c). Donors with lower-than-average 
expression of SNAP-a tended to have greatly increased C4 expres-
sion: such donors included 43 out of the 44 donors with the highest 
C4 expression levels, and their astrocytes expressed 3.2-fold more C4 
compared with astrocytes of donors with above-average expression 
of SNAP-a (Fig. 4f). C4 expression was also greatly increased among 
donors aged over 70 years (Extended Data Fig. 15d,e).

Discussion
Here we identified SNAP—concerted gene-expression programs imple-
mented by cortical neurons and astrocytes to corresponding degrees in 
the same individuals. SNAP expression varied even among unaffected 
control brain donors and may be a core axis of human neurobiological 
variation, with potential implications for cognition and plasticity that 
will be important to understand.

SNAP appears to involve many genes that contribute to synapses and 
to astrocyte–synapse interactions31,32 (Figs. 2 and 3k, Supplementary 
Table 9 and Supplementary Figs. 10 and 11). The genes associated with 
SNAP-a suggested a potential role in supporting perisynaptic astrocyte 
processes, motile, morphologically plastic astrocyte projections whose 
interactions with synapses can promote synaptic stability15. Diverse 
lines of study increasingly reveal a key role for astrocytes in regulat-
ing the ability of synaptic networks to acquire and learn new informa-
tion, for example, by lowering thresholds for activity and synaptic  
plasticity33,34.

A notable aspect of SNAP involved the astrocytic regulation of genes 
with roles in fatty acid and cholesterol biosynthesis and cholesterol 
export, which strongly correlated (across donors) with expression of 
synaptic-component genes by neurons (Fig. 2d,e). Earlier research has 
defined a potential rationale for this neuron–astrocyte coordination: 
synapses and dendritic spines—synapse-containing morphological 

structures—require large amounts of cholesterol, which astrocytes 
supply35. Decreases in cholesterol biosynthesis have previously been 
noted in mouse models of brain disorders36,37 that (like schizophrenia 
and ageing) involve cognitive losses, cortical thinning and reduction 
in neuropil.

Schizophrenia and ageing both brought substantial reductions in 
SNAP expression (Fig. 1i,j). Neuropsychological, neuroimaging and 
neuronal microstructural studies have long noted similar changes 
in schizophrenia and ageing1,2,38–47. Inherited genetic risk for schizo-
phrenia is associated with decreased measures of cognition in older 
individuals48,49, and schizophrenia greatly increases the risk of dementia 
later in life50. Our results suggest that these relationships between 
schizophrenia and ageing arise from shared cellular and molecular  
changes.

Underexpression of SNAP could, in principle, underlie longstanding 
microstructural observations41–47 of reduced numbers of dendritic 
spines on cortical neurons in older humans and primates and in people 
with schizophrenia. These microstructural observations appear to 
arise from highly plastic thin spines and may therefore reflect reduced 
rates of continuous synapse formation and stabilization (rather than 
pruning of mature synapses)42–47. The gene-expression changes that we 
observed in the human dlPFC (Fig. 2c) suggest that cortical neurons 
of all types, including glutamatergic and GABAergic neurons, may be 
affected by such changes.

It is intriguing to consider whether pharmacotherapies or other 
interventions could be developed to promote SNAP as a way to address 
cognitive symptom domains in schizophrenia and ageing such as cog-
nitive flexibility, working memory and executive function deficits, 
continuous and disabling features that are typically not improved by 
available treatments1.

An important future direction will be to determine the extent to 
which SNAP is present in other brain areas, and the relationship of SNAP 
with molecular and physiological changes in dendrites, synapses and 
perisynaptic astrocyte processes. Additional questions involve the 
molecular mechanisms that accomplish neuron–astrocyte coordina-
tion and the extent to which SNAP supports learning and/or cognitive 
flexibility.

SNAP was made visible by human interindividual biological variation. 
Although controlled laboratory experiments usually try to eliminate 
genetic and environmental variation, natural variation may be able to 
reveal cell–cell coordination and regulatory programs in many tissues 
and biological contexts, offering new ways to identify pathophysiologi-
cal processes within and beyond the human brain.
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Methods

Ethical compliance
Brain donors were recruited by the Harvard Brain Tissue Resource 
Center/NIH NeuroBioBank (HBTRC/NBB), in a community-based man-
ner, across the United States. Human brain tissue was obtained from 
the HBTRC/NBB. The HBTRC procedures for informed consent by the 
donor’s legal next-of-kin and distribution of de-identified post-mortem 
tissue samples and demographic and clinical data for research pur-
poses are approved by the Mass General Brigham Institutional Review 
Board. Post-mortem tissue collection followed the provisions of the 
United States Uniform Anatomical Gift Act of 2006 described in the 
California Health and Safety Code section 7150 and other applicable 
state and federal laws and regulations. Federal regulation 45 CFR 46 
and the associated guidance indicate that the generation of data from 
de-identified post-mortem specimens does not constitute human 
participant research that requires institutional review board review.

Donors for snRNA-seq
Donor information with anonymized donor IDs is available in Sup-
plementary Table 1. Consensus diagnosis of schizophrenia was per-
formed by retrospective review of medical records and extensive 
questionnaires concerning social and medical history provided by 
family members. Several regions from each brain were examined by a 
neuropathologist. We excluded participants with evidence for gross 
and/or macroscopic brain changes, or with clinical history consistent 
with cerebrovascular accident or other neurological disorders. Partici-
pants with Braak stage III or higher (modified Bielchowsky stain) were 
excluded. None of the participants had substantial reported history of 
substance dependence within 10 or more years from death, as further 
corroborated by negative toxicology reports. The absence of recent 
substance abuse is typical for samples from the HBTRC, which receives 
exclusively community-based tissue donations.

Exposure to psychotropic and neurotropic medications was 
assessed on the basis of medical records. Estimated daily milligram 
doses of antipsychotic drugs were converted to the approximate 
equivalent of chlorpromazine as a standard comparator51. These val-
ues are reported as lifetime, as well as last six months of life, grams per 
patient. Exposure to other classes of psychotropic drugs was reported 
as present or absent.

Single-nucleus library preparation and sequencing
We analysed the dlPFC (Brodmann area 46 (BA46)), which exhibits 
functional and microstructural abnormalities in schizophrenia52,53 and 
in ageing46. Frozen tissue blocks containing BA46 were obtained from 
the HBTRC. We used snRNA-seq rather than single-cell RNA-seq to avoid 
effects of cell morphology on ascertainment, and because nuclear 
(but not plasma) membranes remain intact in frozen post-mortem 
tissue. Nuclear suspensions from frozen tissue were generated accord-
ing to a protocol that we have made available at Protocols.io (https://
doi.org/10.17504/protocols.io.4r3l22e3xl1y/v1). To ensure that batch 
compositions were balanced, researchers were not blinded to the batch 
allocation or processing order of each specimen. To maximize the 
technical uniformity of the snRNA-seq data, we processed sets of 20 
brain specimens (each consisting of affected and control donors) at 
once as a single pooled sample. Specimens were allocated into batches 
of 20 specimens per batch, ensuring that the same number of cases 
and age-matched controls (10 per group), and men and women (10 
per group) were included in each batch. Some donors were resampled 
across multiple batches to enable quality-control analyses (Extended 
Data Fig. 2). Specimens from cases and age-matched controls were 
also processed in alternating order within each batch. Researchers 
had access to unique numerical codes assigned to the donor-of-origin 
of each specimen as well as basic donor metadata (for example, case–
control status, age, sex).

From each donor, 50 mg of tissue was dissected from the dlPFC— 
sampling across the cortical layers and avoiding visible concentra-
tions of white matter—and used to extract nuclei for analysis. Genera-
tion of gel beads -in-emulsion and library preparation was performed 
according to the 10x Chromium Single Nuclei 3′ v3.1 protocol (version 
CG000204_ChromiumNextGEMSingleCell3'v3.1_Rev D). We encapsu-
lated nuclei into droplets using approximately 16,500 nuclei per reac-
tion, understanding that about 95% of all doublets (cases in which two 
nuclei were encapsulated in the same droplet) would consist of nuclei 
from distinct donors and therefore be recognized by the Dropula-
tion analysis7 as containing combinations of SNP alleles from distinct 
donors. cDNA amplification was performed using 13 PCR cycles.

Raw sequencing reads were aligned to the hg38 reference genome 
using the standard Drop-seq (v.2.4.1)54 workflow, modified so that reads 
from C4 transcripts would not be discarded as multi-mapping (see the 
‘MetaGene discovery’ section below). Reads were assigned to annotated 
genes if they mapped to exons or introns of those genes. Ambient/
background RNA was removed from digital gene expression (DGE) 
matrices using CellBender (v.0.1.0)55 remove-background.

Genotyping and donor assignment from snRNA-seq data
We used combinations of hundreds of transcribed SNPs to assign each 
nucleus to its donor of origin using Dropulation (v.2.4.1)7. Previous 
Dropulation analyses of stem cell experiments used whole-genome 
sequencing (WGS) data on the individual donors for such analyses7. 
For this study, we developed a cost-efficient approach based on SNP 
array data with imputation. Genomic DNA from the individual brain 
donors was genotyped by SNP array (Illumina GSA).

Raw Illumina IDAT files from the GSAMD-24v1-0_20011747 array 
(2,085 samples) and GSAMD-24v3-0-EA_20034606 array (456 sam-
ples) were genotyped using GenCall (v.3.0.0)56 and genotypes were 
phased using SHAPEIT4 (v.4.2.2)57 by processing the data through the 
MoChA workflow (v.2022-12-21)58,59 (https://github.com/freeseek/
mochawdl) using the default settings and aligning markers against 
the GRCh38 genome. APOE genotypes for marker rs429358 were 
removed due to unreliable genotypes. To improve phasing, geno-
types from the McLean cohort were combined with genotypes from 
the Genomic Psychiatry Cohort with IDAT files available also from 
the GSAMD-24v1-0_20011747 array (5,689 samples)60. After remov-
ing 128 samples recognized as duplicates, phased genotypes were 
then imputed using IMPUTE5 (v.1.1.5)61 by processing the output data 
from the MoChA workflow using the MoChA imputation workflow and 
using the high-coverage 1000 Genomes reference panel for GRCh3862, 
including 73,452,470 non-singleton variants across all the autosomes 
and chromosome X. Only SNPs with imputation quality INFO > 0.95 
were used for donor assignments. Using this approach, we found that 
99.6% of nuclei could be assigned confidently to a donor (Extended  
Data Fig. 2a).

To evaluate the accuracy of this method of donor assignment, 
we genotyped a pilot cohort of 11 donors using both WGS and SNP 
array. Importantly, the two methods had 100% concordance on the 
assignment of individual nuclei to donors, validating both our com-
putational donor-assignment method and the sufficiency of the 
SNPs-plus-imputation approach (Extended Data Fig. 2c). SNP data 
for the individual donors are available at NeMO (https://assets.nemo-
archive.org/dat-bmx7s1t).

After donor assignment, DGE matrices from all libraries in each batch 
(7 to 8 libraries per batch) were merged for downstream analyses.

Cell-type assignments
All classification models for cell assignments were trained using 
scPred (v.1.9.2)63. DGE matrices were processed using the following R 
and python packages: Seurat (v.3.2.2)64, SeuratDisk (v.0.0.0.9010)65, 
anndata (v.0.8.0)66, numpy (v.1.17.5)67, pandas (v.1.0.5)68,69 and Scanpy 
(v.1.9.1)70.

https://doi.org/10.17504/protocols.io.4r3l22e3xl1y/v1
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Cell types. Model training. The classification model used for cell- 
type assignments was trained on the DGE matrix from batch 6 
(BA46_2019-10-16), which was annotated as follows. Nuclei with 
fewer than 400 detected genes and 100 detected transcripts were 
removed from the DGE matrix from this batch. After normalization 
and variable gene selection, the DGE matrix was processed through 
an initial clustering analysis using independent component analysis 
(ICA, using fastICA (v.1.2-1))71 as previously described72. This analysis 
produced clustering solutions with 43 clusters of seven major cell 
types (astrocytes, endothelial cells, GABAergic neurons, glutamater-
gic neurons, microglia, oligodendrocytes and polydendrocytes) 
that could be identified based on expression of canonical marker 
genes (markers in Supplementary Fig. 1) (note that around 9% of 
cells within clusters annotated as endothelial cells do not express 
canonical endothelial cell markers but, rather, those of pericytes; 
these ~1,400 cells have been grouped together with endothelial 
cells for downstream analyses). scPred was trained on this anno-
tated DGE matrix, and the resulting model was subsequently used 
to make cell-type assignments for the remaining batches’ DGE  
matrices.
Filtering. After an initial cell-type classification using the above model, 
the DGE matrices were filtered further to remove any remaining hetero-
typic doublets missed by scPred. First, raw DGE matrices from each of 
the 11 batches were subsetted to form separate DGE matrices for each of 
the 7 major cell types (77 subsetted DGE matrices total). Each subsetted 
DGE matrix was normalized using sctransform (v.0.3.1)64 with 7,000 
variable features, scaling and centring. For each cell type, normalized 
DGE matrices from the 11 batches were merged and clustered together 
in Scanpy (v.1.9.1)70 using 50 principal components, batch correction 
by donor using BBKNN (v.1.5.1)73 and Leiden clustering using a range 
of resolutions. The most stable clustering resolution for each cell type 
was selected using clustree (v.0.4.4)74. Clusters expressing markers of 
more than one cell type were determined to be heterotypic doublets; 
cell barcodes in these clusters were discarded from the above DGE 
matrices, and these filtered DGE matrices were then carried forward 
for integrated analyses across batches.

Neuronal subtypes. Classification models for neuronal subtypes were 
trained using DGE matrices from a previous study75 that were subset-
ted to glutamatergic or GABAergic neuron nuclei in middle temporal 
gyrus (MTG). Although a similar dataset exists for human brain nuclei 
from the primary motor cortex (M1)76, we trained the model only on 
the MTG dataset as the M1 lacks a traditional layer 4 (L4), whereas BA46 
does have a L4.

The neuronal subtypes in this dataset include glutamatergic neu-
ron subtypes of distinct cortical layers and with predicted intratelen-
cephalic (IT), extratelencephalic (ET), corticothalamic (CT) and 
near-projecting (NP) projection patterns, as well as the four cardinal 
GABAergic neuron subtypes arising from the caudal (CGE: LAMP5 +, 
VIP +) and medial (MGE: PVALB +, SST +) ganglionic eminences.

We made the following adjustments to the MTG annotations before 
model training. First, as subtype-level annotations (for example, L5 IT, 
as used previously76 for M1) were not available for the MTG dataset, 
we inferred these based on M1/MTG cluster correspondences (from 
extended data figure 10 in ref. 76). Second, we reassigned the follow-
ing glutamatergic neuron types in the MTG from the L4 IT subtype (as 
inferred by integration with M1 in ref. 76) to the L2/3 IT subtype: Exc L3−5 
RORB FILIP1L, Exc L3−5 RORB TWIST2 and Exc L3−5 RORB COL22A1. 
This was done on the basis of their properties described in other  
studies—for example, the Exc L3−5 RORB COL22A1 type has been 
described as a deep L3 type by Patch-seq77—and by the expression of their 
marker genes on a two-dimensional projection of the RNA-expression 
profiles of glutamatergic neuron nuclei (Supplementary Fig. 2).

Feature plots for neuronal subtypes (Supplementary Figs. 2 and 3) 
were generated using markers from the repository in https://bioportal.

bioontology.org/ontologies/PCL (v1.0, 2020-04-26)75,76,78, specifically 
those for neuronal subtypes from MTG.

Astrocyte subtypes. Normalized, filtered DGE matrices from the 11 
batches were merged and clustered together in scanpy using 8 princi-
pal components, batch correction by donor using bbknn73 and Leiden 
clustering using a range of resolutions. The most stable resolution that 
created distinct clusters for putative astrocyte subtypes (resolution 1.3)  
was selected using clustree74. Feature plots for astrocyte subtypes 
previously described in both the MTG and M175,76 (Extended Data Fig. 9) 
were generated using markers from the repository at https://bioportal. 
bioontology.org/ontologies/PCL (v.1.0, 2020-04-26)75,76,78. Leiden clus-
ters were assigned to one of three astrocyte subtypes on the basis of 
expression of these subtype markers.

Donor exclusion
Donors were excluded on the basis of unusual gene-expression profiles 
and/or cell-type proportions (potentially related to agonal events) as 
outlined below.

Expression. Donors with fewer than 1,000 total UMIs in any cell type 
were first excluded. Next, for each cell type, gene-by-donor expression 
matrices comprising the remaining donors were scaled to 100,000 
UMIs per donor and filtered to the top expressing genes (defined as 
having at least 10 UMIs per 100,000 for at least one donor; these were 
among the top 12–19% of expressed genes). These filtered expression 
matrices by cell type were merged into a single expression matrix that 
was used to calculate each donor’s pairwise similarity to the other  
donors (Pearson correlations of log10-scaled expression values across 
genes). The median of these pairwise correlation values was determined 
to be the conformity score for each donor. To identify outliers, these 
donor conformity scores were converted to modified z scores (Mi) for 
each donor as described previuously79:

∼M x x= 0.6745 × ( − )/MADi i

where xi is the donor’s conformity score, ∼x  is the median of donor con-
formity scores and MAD is the median absolute deviation of donor 
conformity scores.

Donors whose modified z scores had absolute values of >5 were 
excluded. This approach flagged a total of five donors (one who had 
low UMI counts and four who were outliers on the basis of expression).

Cell-type proportions. Each donor’s pairwise similarity to the other 
donors was determined on the basis of cell-type proportions (that 
is, the values plotted in Supplementary Fig. 1c,d). Donor conformity 
scores and modified z scores based on these values were calculated for 
each donor using the same approach described above for expression 
values. Donors whose modified z scores had absolute values of >15 were 
excluded. This approach flagged a total of nine donors, two of whom 
were also flagged as expression outliers.

Between the two approaches, in total, 11 unique donors were flagged 
as outliers (4 control, 7 schizophrenia) and excluded from downstream 
analyses.

Latent factor analysis
snRNA-seq data. Our approach was to (1) create a gene-by-donor 
matrix of expression measurements for each of seven cell types; (2) 
concatenate these matrices into a larger matrix in which each gene is 
represented multiple times (once per cell type); and (3) perform latent 
factor analysis8,80 on this larger matrix. We selected probabilistic 
estimation of expression residuals (PEER)81 over other approaches 
(such as principal component analysis (PCA)) for inferring latent 
variables as it is more sensitive and less dependent on the number 
of factors modelled. A major pitfall to avoid when performing latent 

https://bioportal.bioontology.org/ontologies/PCL
https://bioportal.bioontology.org/ontologies/PCL
https://bioportal.bioontology.org/ontologies/PCL
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factor analysis is obtaining highly correlated factors due to overfit-
ting. The latent factors that we have inferred are independent from 
each other when we compare their gene loadings (Extended Data 
Fig. 3c), enabling us to proceed with downstream analyses based on 
these factors.

Raw, filtered DGE matrices from each of the 11 batches were subset-
ted to form separate DGE matrices for each of the 7 major cell types 
(77 subsetted DGE matrices total). For each subsetted DGE matrix, 
cell barcodes from outlier donors were excluded, the DGE matrix was 
normalized using sctransform (v.0.3.1)64 with 3,000 variable features, 
and the output of Pearson residual expression values (with all input 
genes returned) was exported to a new DGE matrix. For each cell type, 
these new expression values in the 11 normalized DGE matrices were 
summarized across donors (taking the sum of residual expression 
values) to create a gene-by-donor expression matrix. Each of these 
expression matrices was filtered to the top 50% of expressed genes 
(based on feature counts scaled to 100,000 transcripts per donor), 
yielding expression matrices with approximately 16,000 to 18,000 
genes per cell type. Within each expression matrix, each gene name was 
modified with a suffix to indicate the cell type of origin (for example, 
ACAP3 to ACAP3_astrocyte), and the seven expression matrices were 
combined to produce a single expression matrix with expression val-
ues from all seven cell types for each donor (a schematic is shown in 
Fig. 1f). This expression matrix was used as the input to latent factor 
analysis with PEER (v.1.0)81 using the default parameters and a range 
of requested factors k.

Although we looked for correlations between these factors and tech-
nical variables, these analyses were negative, with one exception: latent 
factor 2 (LF2) appeared to capture quantitative variation in the relative 
representation of deep and superficial cortical layers in each dissection 
(Extended Data Fig. 3f).

Latent factor donor expression values were adjusted for age by tak-
ing the residuals from a regression of the donor expression values 
against age.

To improve the visualization of latent factor donor expression 
values while leaving the results of statistical analyses unchanged, 
quantile-normalized values were calculated in R using the function 
qnorm(rank(x)/(length(x) + 1)). The figure legends indicate when these 
quantile-normalized values are used.

Proteomics data. Protein intensities from the LRRK2 Cohort Consor-
tium (LCC) cohort of a previous study82 were downloaded from the Pro-
teomeXchange Consortium (PXD026491) and subset to those peptides 
that passed the q-value threshold in at least 25% of all analysed samples. 
These were further subset to intensities from control donors without 
the LRRK2(G2019S) mutation and without erythrocyte contamination 
(n = 22 donors). After normalization of the protein intensities using 
sctransform (v.0.3.1)64, the output of Pearson residual expression val-
ues (with all input proteins returned) was exported to a new matrix. 
This matrix of normalized protein intensities was used as the input to 
latent factor analysis with PEER (v.1.0)81 using the default parameters.

For comparisons of CSF protein loadings to SNAP gene loadings in 
Supplementary Fig. 7, each gene in SNAP was represented by a single 
composite loading representing gene loadings from all cell types. This 
composite loading was determined for each gene by first calculating 
the median expression of each gene (in each cell type), then calculating 
a new loading onto SNAP weighted across cell types by these median 
expression values.

Rhythmicity analysis
For Extended Data Fig. 4f, rhythmicity analyses were performed as 
described previously83 using scripts available at GitHub (https://github.
com/KellyCahill/Circadian-Analysis-) and donor time of death in zeit-
geber time. Analyses also used the following packages: lme4 (v.1.1-31)84, 
minpack.lm (v.1.2-4)85.

GSEA
For GSEA9,86 of latent factors inferred by PEER, the C5 Gene Ontol-
ogy collection (v.7.2)87,88 from the Molecular Signatures Database89,90 
was merged with the SynGO (release 20210225)91 biological process 
(BP) and cell component (CC) gene lists. Gene sets from this merged 
database that were enriched in each latent factor were identified with 
GSEAPreranked in GSEA (v.4.0.3)9,86 using 10,000 permutations and 
gene loadings as the ranking metric.

For astrocyte latent factors inferred by cNMF10, GSEA was performed 
as described above with the addition of the following custom gene sets 
to the database:
• PGC3_SCZ_GWAS_GENES_1TO2_AND_SCHEMA1_GENES: a gene set 

comprising genes implicated in human-genetic studies of schizo-
phrenia, including genes at 1–2 gene loci from GWAS (PGC3)22 and 
genes with rare coding variants (FDR < 0.05)23.

• Gene sets for each of the seven astrocyte subclusters identified in 
ref. 14.

• Gene sets for each of the 62 colour module eigengenes identified by 
WGCNA in ref. 14.

• Gene sets for each of the six astrocyte subcompartments analysed 
in ref. 92, comprising genes encoding the proteins that were unique 
to or enriched in these subcompartments.

For L5 IT glutamatergic neuron latent factors inferred by cNMF, GSEA 
was performed as described above with the addition of the following 
custom gene sets to the database:
• PGC3_SCZ_GWAS_GENES_1TO2_AND_SCHEMA1_GENES: a gene set 

comprising genes implicated in human genetic studies of schizo-
phrenia, including genes at 1–2 gene loci from GWAS (PGC3 (ref. 22)) 
and genes with rare coding variants (FDR < 0.05)23.

Selected gene sets
On the basis of the results of the GSEA described above, we selected 
several of the top-enriched gene sets for further analyses. These are 
referred to in the figures with labels modified for brevity, but are 
described in further detail below. Lists of genes in each gene set are 
provided in Supplementary Table 9.
• Integral component of postsynaptic density membrane (Extended 

Data Figs. 6 and 8 and Supplementary Fig. 8): core genes contribut-
ing to the enrichment of GO:0099061 (v.7.2, integral component 
of postsynaptic density membrane) in the glutamatergic neuron 
component of LF4 (SNAP).

• Neurotransmitter reuptake transporters (Fig. 2e, Extended Data 
Figs. 6 and 8 and Supplementary Fig. 8): genes from among the 100 
genes most strongly recruited by cNMF2 (SNAP-a) with known func-
tions as neurotransmitter-reuptake transporters. These include core 
genes contributing to the enrichment of GO:0140161 (v.7.2, monocar-
boxylate: sodium symporter activity) in SNAP-a.

• Presynapse (Extended Data Figs.  6 and 8 and Supplementary 
Fig. 8): core genes contributing to the enrichment of GO:0098793 
(v.7.2, presynapse) in the GABAergic neuron component of LF4  
(SNAP).

• Regulation of cholesterol biosynthesis (Fig. 2d,e, Extended Data 
Figs. 6–8 and 13d and Supplementary Fig. 8): core genes contribut-
ing to the enrichment of GO:0045540 (v.7.2, regulation of cholesterol 
biosynthetic process) in the astrocyte component of LF4 (SNAP). This 
enrichment is of interest as cholesterol is an astrocyte-supplied com-
ponent of synaptic membranes35,93,94. Products of this biosynthetic 
pathway also include other lipids and cholesterol metabolites with 
roles at synapses, including 24S-hydroxycholesterol, a positive allos-
teric modulator of NMDA receptors95. Although we refer to this gene 
set by this label based on its annotation by GO, we note that subsets 
of these genes contribute to cholesterol export and/or to synthesis 
of additional fatty acids.

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD026491
https://github.com/KellyCahill/Circadian-Analysis-
https://github.com/KellyCahill/Circadian-Analysis-


• Schizophrenia genetics (Fig. 3k and Extended Data Fig. 13a): prior-
itized genes from ref. 23 (FDR < 0.05) or ref. 22.

• Synapse organization (Fig. 3k): core genes contributing to the 
enrichment of GO:0050808 (v.7.2, synapse organization) in cNMF6 
(SNAP-n).

• Synaptic cell adhesion (Figs. 2e and 3k, Extended Data Figs. 6, 8 and 
13a and Supplementary Fig. 8): genes from among the 20 genes most 
strongly recruited by cNMF2 (SNAP-a) with known functions in syn-
aptic cell adhesion. This biological process was selected due to the 
enrichment of GO:0099560 (v.7.2, synaptic membrane adhesion) 
in SNAP-a.

• Synaptic receptors and transporters (Fig. 3k and Extended Data 
Fig. 13a,c): genes from among the 100 genes most strongly recruited 
by cNMF2 (SNAP-a) with known functions as synaptic receptors and 
transporters.

• Synaptic vesicle (Fig. 3k): core genes contributing to the enrichment 
of GO:0008024 (v.7.2, synaptic vesicle) in cNMF6 (SNAP-n).

• Synaptic vesicle cycle (Fig. 2c and Extended Data Fig. 5): core genes 
contributing to the enrichment of GO:0099504 (v.7.2, synaptic vesi-
cle cycle) in the glutamatergic and GABAergic neuron components 
of LF4 (SNAP).

• Trans-synaptic signalling (Fig. 2e and Extended Data Figs. 6 and 8): 
core genes contributing to the enrichment of GO:0099537 (v.7.2, 
trans-synaptic signalling) in the glutamatergic neuron component 
of LF4 (SNAP).

Gene sets displayed in Fig. 2b are the SynGO terms most strongly 
enriched in each top-level category (among biological processes: 
process in the presynapse, synaptic signalling, synapse organization, 
process in the postsynapse, transport and metabolism, respectively).

Analysis of astrocyte and glutamatergic L5 IT neuron gene- 
expression programs
Consensus non-negative matrix factorization. cNMF (v.1.2)10 was 
performed on both astrocyte and glutamatergic L5 IT neurons. We used  
cNMF owing to its scalability to the astrocyte and glutamatergic  
L5 IT neuron datasets. The cNMF protocol detailed in the tutorial for  
PBMCs at GitHub (https://github.com/dylkot/cNMF/blob/master/
Tutorials/analyze_pbmc_example_data.ipynb) was followed for the 
initial data filtering and analysis. For both datasets, data were filtered to 
remove cells with fewer than 200 genes or 200 UMIs. Genes expressed 
in fewer than 10 cells were removed. Factorization was run on raw 
counts data after filtering, with iterations of factorization run for each  
k (factors requested), with a k ranging from 3 to 30.

The astrocyte raw counts data contained 179,764 cells and 42,651 
genes, of which 0 cells and 9,040 genes were excluded. On the basis 
of PCA of the gene expression matrix and the cNMF stability report, 
factorization with k = 11 was selected for further analysis. The 11 cNMF 
factors together explained 25% of variation in gene expression levels 
among single astrocytes.

The L5 IT raw counts data contained 75,929 cells and 42,651 genes, 
of which 0 cells and 8,178 genes were excluded. On the basis of the PCA 
of the gene expression matrix and the cNMF stability report, factoriza-
tion with k = 13 was selected for further analysis. The 13 cNMF factors 
together explained 44% of variation in gene expression levels among 
single L5 IT glutamatergic neurons. To align the direction of interpre-
tation across all three analyses (SNAP, SNAP-a, and SNAP-n), we took 
the negative of cNMF factor 6 (SNAP-n) cell scores, gene loadings and 
donor scores.

The latent factor usage matrix (cell by factor) was normalized before 
analysis to scale each cell’s total usage across all factors to 1.

Co-varying neighbourhood analysis. To further assess the robust-
ness of the astrocyte gene-expression changes represented by SNAP 
and SNAP-a, we used a third computational approach—co-varying 

neighbourhood analysis (CNA, v.0.1.4)96. The protocol provided in 
the CNA tutorial at GitHub (https://nbviewer.org/github/yakirr/cna/
blob/master/demo/demo.ipynb) was followed for data preprocessing 
and analysis.

Pilot association tests to find transcriptional neighbourhoods asso-
ciated with schizophrenia case–control status were first performed 
using the default value for Nnull. These pilot analyses evaluated the 
effects of batch correction (by batch or donor) and covariate cor-
rection (by age, sex, post-mortem interval, number of UMIs or num-
ber of expressed genes). Nearly all analyses yielded highly similar 
neighbourhoods associated with case–control status with the same 
global P value (P = 1 × 10−4), with the exception of batch correction 
by donor which yielded P = 1. The final association test described 
in Supplementary Fig. 9 was performed with an increased value for 
Nnull (Nnull = 1,000,000) and without additional batch or covariate  
correction.

Regulatory network inference
The goal of pySCENIC97,98 is to infer transcription factors and regulatory 
networks from single-cell gene-expression data. The pySCENIC (v0.11.2) 
protocol detailed in the tutorial for PBMCs at GitHub (https://github.
com/aertslab/SCENICprotocol/blob/master/notebooks/PBMC10k_
SCENIC-protocol-CLI.ipynb) was followed for the initial data filtering 
and analysis. For both astrocytes and L5 IT glutamatergic neurons, data 
were filtered to remove cells with fewer than 200 genes, and genes with 
fewer than 3 cells. Cells with high MT expression (>15% of their total 
transcripts) were removed.

The gene regulatory network discovery adjacency matrix was 
inferred by running Arboreto on the gene counts matrix and a list of 
all transcription factors provided by the authors (https://resources.
aertslab.org/cistarget/tf_lists/allTFs_hg38.txt) to generate an initial 
set of regulons. This set was further refined using ctx, which removes 
targets that are not enriched for a motif in the transcription factor 
using a provided set of human specific motifs (https://resources.
aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl) 
and cis targets (https://resources.aertslab.org/cistarget/databases/
homo_sapiens/hg38/refseq_r80/mc9nr/gene_based). Finally, aucell 
was run to generate the per-cell enrichment scores for each discovered 
transcription factor.

Super-enhancer analysis
Preparation of input BAM files was performed as follows. FASTQ files 
of bulk H3K27ac HiChIP data from the middle frontal gyrus99 were 
downloaded from the Gene Expression Omnibus (GEO: GSM4441830 
and GSM4441833). Demultiplexed FASTQ files were trimmed with 
Trimmomatic (v.0.33)100 using the parameter SLIDINGWINDOW:5:30. 
Trimmed reads were aligned to the hg38 reference genome with  
Bowtie2 (v2.2.4)101 using the default parameters. Uniquely mapped 
reads were extracted with samtools (v.1.3.1)102 view using the param-
eters -h -b -F 3844 -q 10.

Preparation of input constituent enhancers was performed as 
follows. FitHiChIP interaction files for H3K27ac from the middle 
frontal gyrus99 were downloaded from the GEO (GSM4441830 and 
GSM4441833). These were filtered to interacting bins (at interactions 
with q < 0.01) that overlap bulk H3K27ac peaks in the one-dimensional 
HiChIP data in both replicates. Next, these bins were intersected with 
IDR-filtered single-cell assay for transposase-accessible chromatin 
using sequencing (scATAC–seq) peaks in isocortical and unclassified 
astrocytes (peaks from clusters 13, 15 and 17, downloaded from the 
GEO (GSE147672))99. Unique coordinates of these filtered regions were 
converted to GFF files.

Super-enhancers were called with ROSE (v.1.3.1)103,104 using the 
input files prepared above and the parameters -s 12500 -t 2500. Coor-
dinates of promoter elements for Homo sapiens (December 2013  
GRCh38/hg38) were downloaded from the Eukaryotic Promoter 
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Database (EPD)105 using the EPDnew selection tool (https://epd.expasy.
org/epd/EPDnew_select.php)106. Using these sets of coordinates, FitHi-
ChIP loops that overlap bulk H3K27ac peaks and scATAC peaks in astro-
cytes were subset to those that contained a promoter in one anchor 
and a super-enhancer in the other anchor. Binomial smooth plots were 
generated as described previously107.

Heritability analyses
MAGMA. Summary statistics from ref. 22 were uploaded to the FUMA 
(v.1.5.6)108 web server (https://fuma.ctglab.nl). Gene-level z scores 
were calculated using SNP2GENE with the ‘Perform MAGMA’ function 
(MAGMA v.1.08) and the default parameter settings. The reference 
panel population was set to ‘1000G Phase3 EUR’. The MHC region was 
excluded due to its unusual genetic architecture and LD. MAGMA z 
scores were then used for downstream analyses as described in the 
Supplementary Note.

Stratified LD score regression. To partition SNP heritability, we used 
stratified LD score regression (S-LDSC; v.1.0.1)26, which assesses the 
contribution of gene expression programs to disease heritability. 
First, for analysis of astrocyte-identity genes, we computed (within 
the BA46 region only), a Wilcoxon rank-sum test on a per-gene basis 
using presto (v.1.0.0)109 between astrocytes and all other cell types; 
for analysis of astrocyte-activity genes (SNAP-a), we sorted all genes 
expressed in astrocytes by their SNAP-a loadings and took the top 2,000 
genes. We then converted each gene set into annotations for S-LDSC 
by extending the window size to 100 kb (from the transcription start 
site and transcription end site), and ordered SNPs in the same order 
as the .bim file (from phase 3 of the 1000 Genomes Project110) used to 
calculate the LD scores. We then computed LD scores for annotations 
using a 1 cM window and restricted the analysis to Hapmap3 SNPs. We 
excluded the MHC region due to both its high LD and high gene density. 
We used LD weights calculated for HapMap3 SNPs for the regression 
weights. We then jointly modeled the annotations corresponding to 
our gene expression program, as well as all protein-coding genes, and 
the baseline model (baseline model v.1.2). We tested for enrichment of 
SNP heritability on the traits listed below. The LDSC script ‘munge_sum-
stats.py’ was used to prepare the summary statistics files. We used the 
resultant P values, which reflect a one-sided test that the coefficient (τ) 
is greater than zero, as a determinant as to whether our cell type gene 
expression programs are enriched for SNP-heritability of a given trait111.

We used summary statistics from the following studies in Supplemen-
tary Fig. 12: ADHD112, ALS113, Alzheimer’s disease114, age of smoking initia-
tion115, autism116, bipolar disorder (all, type I, and type II)117, cigarettes 
per day115, educational attainment118, epilepsy (all, focal, generalized)119, 
height120, IQ121, insomnia122, neuroticism123, OCD124, schizophrenia22, 
PTSD125, risk126, subjective well-being127, smoking cessation115, smoking 
initiation115, Tourette’s128 and ulcerative colitis129.

Polygenic risk scores
Clumped summary statistics for schizophrenia (from ref. 22) across 
99,194 autosomal markers were downloaded from the Psychiatric 
Genomics Consortium portal (file PGC3_SCZ_wave3_public.clumped.
v2.tsv). After liftOver of markers to GRCh38 using custom tools, 99,135 
markers were available for scoring. We processed the output data 
from the MoChA imputation workflow58,59 using BCFtools (v.1.16) and 
the MoChA score (v.2022-12-21)58,59 workflow (https://github.com/ 
freeseek/score) to compute schizophrenia polygenic scores across all 
2,413 imputed samples from the McLean cohort.

C4
MetaGene discovery. Genes that have high sequence homology are 
typically difficult to capture using standard UMI counting methods. 
Reads from these regions map to multiple locations in the genome 
with low mapping quality, and are ignored by many gene expression 

algorithms. MetaGene discovery leverages that high sequence similar-
ity by looking for UMIs that consistently map to multiple genes at low 
mapping quality consistently across many cells.

Each UMI is associated with a single gene if at least one read from the 
UMI uniquely maps to a single gene model. If all reads are mapped at 
low quality to multiple genes, then assignment of that UMI to a specific 
gene model is ambiguous, and that UMI is associated with all gene 
models. By surveying a large number of cells, a set of gene families 
are discovered where UMIs are consistently associated with sets of 
genes. This discovery process finds expected sets of gene families with 
high sequence homology directly from the mapping, such as C4A/C4B, 
CSAG2/CSAG3 and SERF1A/SERF1B.

These UMIs are then extracted in the counts matrix as a joint expres-
sion of all genes in each set. We prefer to calculate expression as the joint 
expression of all genes in the set because the priors in the data prevent 
confidently distributing these ambiguous UMIs. For example, C4A and 
C4B have very few UMIs that map uniquely to either gene in the set  
(8 UMIs, <0.5% of all UMIs captured for this set of genes), which is a weak 
prior to proportionally assign ambiguous UMIs to the correct model.

This approach was validated for C4 expression by generating a refer-
ence genome that contained only one copy of C4. This allowed each 
UMI to map uniquely to the single remaining copy of the gene using 
standard tools. The custom reference approach and joint expression 
of C4A/C4B on the basis of the metagene approach was concordant in 
15,664 of 15,669 cells tested (Extended Data Fig. 15c).

Imputation of C4 structural variation. Phased copy-number calls for 
structural features of the C4 gene family were obtained by imputation 
using Osprey, a method for imputing structural variation. The total 
copy number of C4 genes, the number of copies of C4A and C4B, and 
the copy number of the polymorphic HERV element that distinguishes 
long from short forms of C429 were imputed into the McLean cohort 
using a reference panel based on 1000 Genomes62.

An imputation reference panel was constructed for GRCh38 using 
2,604 unrelated individuals (out of 3,202 total) from 1000 Genomes. 
SNPs were included in the reference panel if (1) they were within the 
locus chromosome 6: 24000000–34000000 but excluding the 
copy-number variable region chromosome 6: 31980001–32046200; 
and (2) they were not multi-allelic and (3) they had an allele count (AC) 
of at least 3 when subset to the 2,604 reference individuals.

The imputation reference panel was merged with genotypes for the 
McLean cohort obtained from the GSA genotyping arrays. Markers 
not appearing in both datasets were dropped and the merged panel 
was phased with SHAPEIT4 (v.4.2.0)57 using the default parameters 
plus --sequencing and the default GRCh38 genetic map supplied with 
SHAPEIT.

Reference copy numbers for the C4 structural features on GRCh38 
were obtained for the 3,202 1000 Genomes samples using a custom 
pipeline based on Genome STRiP (v.2.0)130. The source code for this 
pipeline is available at Terra (http://app.terra.bio)131. In brief, the pipe-
line uses Genome STRiP to estimate the total C4 copy number and HERV 
copy number from normalized read depth of coverage, then estimates 
the number of copies of C4A and C4B using maximum likelihood based 
on reads that overlap the C4 active site (coordinates, chromosome 
6: 31996082–31996099 and chromosome 6: 32028820–32028837). 
These copy-number genotypes were then subset to the 2,604 unre-
lated individuals.

The structural features were imputed into the merged imputation 
panel using Osprey (v.0.1-9)132,133 by running ospreyIBS followed by 
osprey using the default parameters plus ‘-iter 100’, the SHAPEIT4 
genetic map for GRCh38 chromosome 6 and a target genome interval 
of chromosome 6: 31980500–32046500.

The output from Osprey was post-processed using a custom R 
script (refine_C4_haplotypes.R) that enforces constraints between the 
copy-number features and recalibrates the likelihoods considering only 
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possible haplotypes. The enforced constraints are that the C4A + C4B 
copies must equal the total C4 copy number and that the HERV copy 
number must be less than or equal to C4 copy number.

Source data and visualization
In addition to the software cited above, we used Colour Oracle 
(v.1.3)134,135 as well as the following packages to prepare the source data 
and figures in this manuscript.

Python (v.3.8.3): matplotlib (v.3.5.2)136 and seaborn (v.0.10.1)137. R 
(v.4.1.3): cluster (v.2.1.2)138, ComplexHeatmap (v.2.10.0)139,140, data.table 
(v.1.14.8)141, DescTools (v.0.99.48)142, dplyr (v.1.1.2)143, gdata (v.2.19.0)144, 
ggforce (v.0.4.1)145, ggplot2 (v.3.4.2)146, ggpmisc (v.0.5.3)147, ggpointden-
sity (v.0.1.0)148, ggpubr (v.0.5.0)149, ggrastr (v.1.0.2)150, ggrepel (v.0.9.3)151, 
grid (v.4.1.3)152, gridExtra (v.2.3)153, gtable (v.0.3.3)154, matrixStats 
(v.0.63.0)155, pheatmap (v.1.0.12)156, plyr (v.1.8.8)157, purrr (v.1.0.1)158, 
RColorBrewer (v.1.1-3)159, readxl (v.1.4.2)160, reshape2 (v.1.4.4)161, scales 
(v.1.2.1)162, splitstackshape (v.1.4.8)163, stats (v.4.1.3)152, stringi (v.1.7.12)164, 
stringr (v.1.5.0)165, tidyr (v.1.3.0)166 and viridis (v.0.6.2)167.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequencing data generated in this study and processed sequenc-
ing files are available at the Neuroscience Multi-omic Data Archive 
(NeMO) (https://assets.nemoarchive.org/dat-bmx7s1t). The data are 
available under controlled use conditions set by human privacy regula-
tions. To access the data, the requester must first create an account in 
DUOS (https://duos.broadinstitute.org) using their institutional email 
address. The signing official from the requester’s institution must also 
register in DUOS to issue the requester a library card agreement. The 
requester will then need to fill out a data access request through DUOS, 
which will be reviewed by the Broad Institute’s Data Access Committee. 
Once a request is approved, NeMO will be notified to authorize access 
to the data. Processed expression data can also be queried using the 
interactive public web interface that we created (https://dlpfc.mcca-
rrolllab.org/app/dlpfc). The following publicly available datasets were 
also analysed: ProteomeXchange Dataset PXD026491 (ref. 82) and 
Gene Expression Omnibus Series GSE147672 (ref. 99). Source data are 
provided with this paper.

Code availability
Software and core computational analysis to align and process sequenc-
ing reads and perform donor assignment are freely available at GitHub 
(https://github.com/broadinstitute/Drop-seq). Published or publicly 
available software, tools, algorithms and packages are cited with their 
version numbers in the text and Reporting Summary. Other custom 
code is available on request from the corresponding authors.
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Extended Data Fig. 1 | Ages of brain tissue donors. a, Distribution of the ages 
of brain donors (n = 191 donors). b, Distributions of donors’ ages by schizophrenia 
status, displayed as a quantile-quantile plot that compares ages of unaffected 
control donors (n = 97 donors) to ages of donors with schizophrenia (n = 94 
donors). c–d, Distributions of donors’ ages separated by schizophrenia status 
(n = 97 unaffected and 94 affected), displayed as (c) histograms and (d) violin 
plots. e–f, Distributions of donors’ ages, separated by sex (n = 75 women and 
116 men), displayed as (e) histograms and (f) violin plots. Note that while female 
brain donors are on average older than male donors, expression of SNAP (LF4) 
did not associate with sex in either a naive or age-adjusted analysis (Extended 
Data Fig. 4d,e), nor in a simultaneous regression on age, sex, and schizophrenia 
affected/unaffected status (Supplementary Table 3).



Extended Data Fig. 2 | Single-donor assignment and sequencing metrics.  
a, Density plot showing the fraction of all nuclei that were determined to be 
“singlets” (containing alleles from just one donor); n = 1,262,765 assignable 
singlets out of 1,271,830). b, Density plot showing donor-assignment 
likelihoods (as false discovery rates, on a log scale) for the 1,271,830 singlet 
nuclei. c, Validation of the computational assignment of nuclei to individual 
brain donors whose genomes have been analysed (individually) by SNP 
array-genotyping plus imputation. The matrix displays the concordance of 
single-donor assignment between whole-genome sequencing (WGS) (y-axis) 
and SNP array + imputation (x-axis) for a pilot set of 11 donors whose genomes 
were analysed by both methods. (Accuracy of donor assignment when WGS 
data are available has been previously shown by)7. Each row/column 
corresponds to one of the 11 donors, and each entry in the table displays the 
number of nuclei that were assigned to a given donor (at a false discovery rate 

of 0.05). d, Number of nuclei assigned to each donor in each of 11 batches or 
(rightmost panel) across all batches, separated by schizophrenia case-control 
status (n = 10 controls and 10 schizophrenia cases per batch). P-values from a 
two-sided Wilcoxon rank-sum test comparing the affected to the unaffected 
donors are reported at the top of each panel. Central lines represent medians. 
e, Median number of UMIs ascertained per donor in each batch or (rightmost 
panel) across all batches, separated by schizophrenia case-control status 
(n = 10 controls and 10 schizophrenia cases per batch). P-values from a 
two-sided Wilcoxon rank-sum test comparing the affected to the unaffected 
donors are reported at the top of each panel. Central lines represent medians.  
f, Relationship of median UMIs/nucleus (normalized to the median value of the 
donors in each donor’s batch) to (top) post-mortem interval (PMI) and (bottom) 
RIN score (Spearman’s ρ). Colours represent different batches. Shaded regions 
represent 95% confidence intervals.
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Extended Data Fig. 3 | Properties of the latent factors inferred from snRNA- 
seq data. a, Total % variance in expression explained by latent factors with 
different numbers of requested factors k. b, Fraction of variance explained by 
each latent factor in an analysis with 10 requested factors. c–d, Independence 
of latent factors, visualized as Pearson correlation heatmaps of factors’ (c) 
gene loadings (n = 125,437 gene/cell-type combinations) and (d) donor scores 
(n = 180 donors). e, Expression level of each latent factor (panels) in each donor 
(points), split by batch (n = 20 donors per batch). f, Relationship of latent 
factors to markers of superficial and deep cortical layers from75. Markers label 

dominant classes of glutamatergic neurons (superficial: LAMP5, LINC00507, 
RORB; deep: THEMIS, FEZF2) or spatially restricted subtypes (superficial: Exc L2 
LAMP5 LTK, marked by CUX2 and LINC01500; deep: Exc L5-6 THEMIS C1QL3, 
marked by SATB2 and LINC00343). Factor 2 exhibits the most distinct 
segregation of these superficial and deep layer markers when genes are ranked 
by their loadings onto each factor. n = 18,830 genes expressed in glutamatergic 
neurons; coloured dots are plotted over the dots of genes not among the markers 
listed above (grey).



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Properties of Latent Factor 4 (LF4). a, Expression of 
each latent factor by case-control status (n = 93 controls and 87 cases). P-values 
are from a two-sided Wilcoxon rank-sum test. Box plots show interquartile 
ranges; whiskers, 1.5x the interquartile interval; central lines, medians; 
notches, confidence intervals around medians. b, Expression of LF4 by case-
control status, split by sex (female: n = 31 controls and 39 cases; male: n = 62 
controls and 48 cases). P-values are from a two-sided Wilcoxon rank-sum test. 
Box plots show interquartile ranges; whiskers, 1.5x the interquartile interval; 
central lines, medians; notches, confidence intervals around medians. Note 
that the more-modest p-value for the females-only analysis relative to the males- 
only analysis appears to represent the smaller sample (70 females vs. 110 males) 
rather than a weaker relationship to schizophrenia status; please see also 
Extended Data Fig. 10h. c, Similar plots as in b, here displaying LF4 expression 
values adjusted for donor age. d, Expression of LF4 by sex, split by case-control 
status (controls: n = 31 females and 62 males; cases: n = 39 females and 48 
males). P-values are from a two-sided Wilcoxon rank-sum test. Box plots show 
interquartile ranges; whiskers, 1.5x the interquartile interval; central lines, 
medians; notches, confidence intervals around medians. e, Similar plots as in d, 

here displaying LF4 expression values adjusted for donor age. f–k, Relationship 
of LF4 expression measurements to other available donor and tissue 
characteristics: (f ) time of death in zeitgeber time (ZT), with rhythmicity 
analyses performed as in83; (g) post-mortem interval; (h) number of nuclei 
sampled; (i) number of UMIs sampled; ( j) use of psychiatric medications (left 
column) across each donor’s lifespan or (right column) in the last 6 months 
prior to death; and (k) use of clozapine. Correlation coefficients in g–j are 
Spearman’s ρ. P-values in k are from a two-sided Wilcoxon rank-sum test.  
Box plots show interquartile ranges; whiskers, 1.5x the interquartile interval; 
central lines, medians; notches, confidence intervals around medians. l, See 
also Fig. 2a. LF4 involves broadly similar gene-expression effects in glutamatergic 
and GABAergic neurons, and a distinct set of gene-expression effects in 
astrocytes. Genes plotted are the protein-coding genes that are expressed  
(at levels of at least 10 UMIs per 105) in both cell types (Spearman’s ρ; n = 1,538, 
1,067, and 1,131 genes respectively). m, Concentrations of the strongest 
enriched neuronal gene-expression changes in LF4 among synaptic functions 
as annotated by SynGO91. Plots show categories of SynGO biological processes.



Extended Data Fig. 5 | Relationship of synaptic vesicle cycle gene expression 
in neuronal subtypes to advancing age. a−b, See also Fig. 2c. Neuronal 
expression of synaptic vesicle cycle genes in the most abundant subtypes  
of (a) glutamatergic and (b) GABAergic neurons (across 180 donors), plotted 
against donor age (Spearman’s ρ). Expression values are the fraction of all UMIs 

in each donor (from the indicated subtype) that are derived from these genes, 
normalized to the median expression among control donors. Shaded regions 
represent 95% confidence intervals. The observed decline in schizophrenia  
and aging was consistent with earlier observations that expression of genes for 
synaptic components is reduced in schizophrenia168 and with advancing age169.
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Extended Data Fig. 6 | Relationship of gene-set expression in astrocytes 
and neurons to advancing age and schizophrenia. a, Expression of gene sets 
enriched in the astrocyte and neuronal components of LF4 (across 180 donors), 
plotted against donor age (Spearman’s ρ). Expression values are the fraction of 
all UMIs in each donor (from the indicated cell type) that are derived from these 
genes, normalized to the median expression among control donors. Shaded 
regions represent 95% confidence intervals. b, Expression (by donor, separated 
by schizophrenia case-control status; n = 180 donors) of gene sets enriched in 

the astrocyte and neuronal components of LF4. Expression values are the 
fraction of all UMIs in each donor (from the indicated cell type) that are derived 
from these genes, adjusted for donor age. P-values from a two-sided Wilcoxon 
rank-sum test comparing the affected to the unaffected donors are reported at 
the top of each panel. Box plots show interquartile ranges; whiskers, 1.5x the 
interquartile interval; central lines, medians; notches, confidence intervals 
around medians.



Extended Data Fig. 7 | Expression of cholesterol-biosynthesis genes in 
cortical cell types. a, See also Fig. 2d. For each cortical cell type: (Left) 
Distributions of LF4 gene loadings for (black) all expressed genes and (blue) 
specifically for genes annotated by GO as having roles in cholesterol 
biosynthesis (core genes contributing to the enrichment of GO:0045540 
(“cholesterol biosynthesis genes”) in that cell type’s component of LF4. (Right) 
Each cell type’s expression of cholesterol biosynthesis genes (by donor, split by 
schizophrenia case-control status; n = 180 donors). Expression values are the 
fraction of all UMIs in each donor (from the indicated cell type) that are derived 
from these genes. P-values are from a two-sided Wilcoxon rank-sum test 

comparing the affected to the unaffected donors. Box plots show interquartile 
ranges; whiskers, 1.5x the interquartile interval; central lines, medians; notches, 
confidence intervals around medians. b, Expression in astrocytes of cholesterol 
biosynthesis genes by donor, separated by statin intake among donors with 
available medication data (n = 63 donors not taking statins and 16 donors 
taking statins). Expression values are the fraction of all UMIs in each donor’s 
astrocytes that are derived from these genes. P-value is from a two-sided 
Wilcoxon rank-sum test. Box plots show interquartile ranges; whiskers, 1.5x the 
interquartile interval; central lines, medians; notches, confidence intervals 
around medians.

http://amigo.geneontology.org/amigo/term/GO:0045540


Article

Extended Data Fig. 8 | Concerted synaptic investments by neurons and 
astrocytes, adjusted for age and schizophrenia case-control status.  
a–c, See also Fig. 2e. Relationship of donors’ neuronal gene expression to 
astrocyte gene expression (Spearman’s ρ), adjusted for age and case-control 
status. Astrocyte gene sets plotted on the x-axes represent (left) cholesterol 
biosynthesis, (middle) synaptic adhesion, and (right) neurotransmitter 

reuptake transporters. Neuronal gene sets plotted on the y-axes represent  
(a) trans-synaptic signalling, (b) integral component of postsynaptic density, 
and (c) presynapse genes. Expression values are the fraction of all UMIs in each 
donor (from the indicated cell type) that are derived from these genes, adjusted 
for donor age and schizophrenia case-control status. Shaded regions represent 
95% confidence intervals.



Extended Data Fig. 9 | Astrocyte subtype classification and proportions 
across donors. a, Two-dimensional projection of the RNA-expression profiles 
of 179,764 astrocyte nuclei from 180 donors, reproduced from Fig. 3a. Nuclei 
are coloured by their assignments to subtypes of astrocytes using classifications 
from75 and76. The same projection is used in panels b to d. b−d, Expression 
levels of marker genes for subtypes of (b) protoplasmic astrocytes (SLC1A3+) 
and non-protoplasmic astrocytes (SLC1A3− and GFAP+) comprising the (c) 
fibrous (AQP1+) and (d) interlaminar (AQP1− and ID3+, SERPINI2+, and WDR49+) 
subtypes. Markers are from75 or from transcriptomically similar subtypes in76. 

Values represent Pearson residuals from variance stabilizing transformation 
(VST). e, Proportions of astrocyte subtypes in BA46 by schizophrenia status 
(n = 93 unaffected and 87 affected). P-values from a two-sided Wilcoxon 
rank-sum test comparing the affected to the unaffected donors are reported  
at the top of each panel. Box plots show interquartile ranges; whiskers, 1.5x the 
interquartile interval; central lines, medians; notches, confidence intervals 
around medians. f, Relationship of sampled astrocyte subtype proportions to 
donor age (Spearman’s ρ).
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Astrocyte gene-expression programs inferred by 
cNMF (SNAP-a) and their relationship to SNAP. a, Visualization of the trade-
off between error and stability of cNMF factors as a function of the number of 
factors k. 11 factors were requested based on these results. b, Clustergram of 
consensus matrix factorization estimates. Each colour on the x- and y-axes 
represents one of 11 cNMF factors. c-d, Relationship of SNAP-a to SNAP by (c) 
gene loadings (n = 33,611 genes) and (d) donors’ expression levels of each factor 
(n = 180 donors) (Spearman’s ρ). Shaded regions represent 95% confidence 
intervals. e, UMAP of RNA-expression patterns from 179,764 astrocyte nuclei 
from 180 donors, using the same projection from Fig. 3a–c. Nuclei are coloured 
by (left) each donor’s expression of SNAP or (right) each cell’s expression of the 
astrocyte component of SNAP (cNMF2, also referred to as SNAP-a). SNAP-a is 
reproduced from Fig. 3c for comparison with SNAP. f, Distributions of SNAP-a 
expression levels among astrocytes in each donor, split by experimental batch. 
Box plots show interquartile ranges; whiskers, 1.5x the interquartile interval; 
central lines, medians. g, Density plots showing distributions of SNAP-a 
expression levels among astrocytes in each donor for one representative batch 

(batch 4) out of 11 batches. Labels in top-right corners indicate anonymized 
research IDs at the Harvard Brain Tissue Resource Center. Colours represent 
case-control status (green: controls; purple: schizophrenia cases). At the 
single-astrocyte level, SNAP-a expression exhibited continuous, quantitative 
variation rather than discrete state shifts by a subpopulation of astrocytes, 
supporting the idea that astrocyte biological variation extends beyond 
polarized states17,170,171, particularly in genes strongly loading onto SNAP-a172–181. 
h, Distributions of SNAP-a expression levels by case-control status, split by sex. 
P-values from a two-sided Wilcoxon rank-sum test comparing the affected to 
the unaffected donors are reported at the top of each panel. Box plots show 
interquartile ranges; whiskers, 1.5x the interquartile interval; central lines, 
medians; notches, confidence intervals around medians. i, Distributions of 
SNAP-a expression levels by case-control status, split by astrocyte subtype. 
P-values from a two-sided Wilcoxon rank-sum test comparing the affected to 
the unaffected donors are reported at the top of each panel. Box plots show 
interquartile ranges; whiskers, 1.5x the interquartile interval; central lines, 
medians; notches, confidence intervals around medians.
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Extended Data Fig. 11 | Relationship of reactive astrocyte marker expression to SNAP-a expression. Relationship of donors’ expression levels of reactive 
astrocyte marker genes to SNAP-a expression (Spearman’s ρ). Markers are from16 and represent (a) pan-reactive (PAN), (b) A1, and (c) A2 reactive astrocytes.



Extended Data Fig. 12 | Biological states and transcriptional programs of 
L5 IT glutamatergic neurons in schizophrenia. a–b, Relationship of SNAP-a 
to SNAP-n (Spearman’s ρ). Values plotted are (a) quantile-normalized and (b) 
donor age-adjusted, quantile-normalized donor scores for each factor. Shaded 
regions represent 95% confidence intervals. c, UMAP of regulon activity scores 
(as inferred by pySCENIC98) from L5 IT glutamatergic neuron nuclei from 180 
donors, using the same projection from Fig. 3f–h. Regulons plotted are the 
most strongly enriched in L5 IT glutamatergic neurons with high versus low 
SNAP-n expression. (+) indicates that the targets of the indicated regulon were 
found to be upregulated in expression.
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Extended Data Fig. 13 | Astrocyte gene-expression programs underlying 
SNAP-a. a, See also Fig. 3k. Concerted expression in (left) astrocytes and  
(right) GABAergic neurons of genes strongly recruited by SNAP-a. These were 
enriched in genes encoding synaptic-adhesion proteins, intrinsic components 
of synaptic membranes such as transporters and receptors, as well as genes 
strongly implicated in human genetic studies of schizophrenia. Genes in the 
“Schizophrenia genetics” heatmap are from among the prioritized genes 
from23 (FDR < 0.05) or22. Genes annotated by ̂  are from among all genes at loci 
implicated by common variants in22, regardless of prioritization status.  
b, UMAP of regulon activity scores (as inferred by pySCENIC98) from 179,764 
astrocyte nuclei from 180 donors, using the same projection from Fig. 3a–c. 
Regulons plotted are the most strongly enriched in astrocytes with high versus 
low SNAP-a expression. (+) indicates that the targets of the indicated regulon 
are predicted to be upregulated in expression. c–d, Transcriptional investments 
(by donor, separated by schizophrenia case-control status) in (c) genes encoding 
synaptic receptors and transporters and (d) cholesterol biosynthesis genes,  

in subtypes of astrocytes. Quantities plotted are the fraction of all UMIs in each 
subtype that are derived from these genes. P-values from a two-sided Wilcoxon 
rank-sum test comparing the affected to the unaffected donors are reported at 
the top of each panel. Box plots show interquartile ranges; whiskers, 1.5x the 
interquartile interval; central lines, medians; notches, confidence intervals 
around medians. e, Relationship of SNAP-a expression to association with 
super-enhancers. Genes expressed in astrocytes were grouped based on 
whether their promoters were predicted to contact super-enhancers in 
astrocytes (using bulk H3K27ac HiChIP and scATAC-seq data from99), and 
SNAP-a loadings were compared between the two groups. (Left) Distributions 
of SNAP-a gene loadings for (blue) 1,286 genes whose promoters are predicted 
to contact super-enhancers in astrocytes and (black) the set of 32,325 
remaining expressed background genes. (Right) Binomial smooth results of 
scaled SNAP-a gene loadings versus log10-scaled mean expression values in 
astrocytes, shown separately for the two groups. Shaded regions represent 
95% confidence intervals.



Extended Data Fig. 14 | Expression of well-characterized transcriptional 
programs in SNAP-a and SNAP-n. a, Concerted expression in (left) astrocytes 
and (right) L5 IT glutamatergic neurons of target genes of known transcriptional 
programs specifically active in SNAP-a or SNAP-n. Genes are listed in 
decreasing order by their importance for each regulon as scored by pySCENIC. 
b, Relationship of donors’ expression levels of known SREBP1 target genes 

(involved in fatty acid biosynthesis)18,182,183 to SNAP-a expression (Spearman’s ρ). 
Target-gene expression levels in astrocytes are shown. c, Relationship of 
donors’ expression levels of known JUNB target genes (that are late-response 
genes)19,20,184 to SNAP-n expression (Spearman’s ρ). Target-gene expression 
levels in L5 IT glutamatergic neurons are shown.
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Extended Data Fig. 15 | Relationship of astrocytic NRXN1 and C4 
expression to advancing age. a, Relationship of NRXN1 expression to age in 
astrocytes (Spearman’s ρ). Shaded region represents 95% confidence interval. 
b, Expression of NRXN1 in astrocytes in control donors, split by donor age 
(n = 56 donors younger than 70 years old and 37 donors 70 years old or  
older). P-value is from a two-sided Wilcoxon rank-sum test. Box plots show 
interquartile ranges; whiskers, 1.5x the interquartile interval; central lines, 
medians; notches, confidence intervals around medians. c, Validation of a 
metagene computational approach for identifying RNA transcripts (UMIs) 
from the C4 genes. Standard analysis approaches tend to discard sequence 
reads from C4A or C4B because these genes are almost identical in sequence, 
differing only at a few key positions (far from the 3’ end), such that most reads 
are discarded due to low mapping quality. To measure expression of these 
genes, UMIs were either aligned to a custom reference genome that contained 
only one C4 gene (x-axis) or were processed through a custom pipeline that 
identified UMIs associated with sets of gene families with high sequence 
homology, including C4A/C4B (y-axis). The two approaches (custom reference 
approach and joint expression of C4A/C4B via the metagene approach) arrived 
at concordant C4 UMI counts in 15,664 of 15,669 cells tested. Note that these 
measurements do not distinguish between C4A and C4B. d, Relationship of C4 
expression to age in astrocytes (Spearman’s ρ). Shaded region represents 95% 
confidence interval. e, Expression of C4 in astrocytes in control donors, split 
by donor age (n = 56 donors younger than 70 years old and 37 donors 70 years 
old or older). P-value is from a two-sided Wilcoxon rank-sum test. Box plots 
show interquartile ranges; whiskers, 1.5x the interquartile interval; central 
lines, medians; notches, confidence intervals around medians.
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