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            Abstract
The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1,2,3,4,5,6,7,8,9,10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.
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                    Fig. 1: Behaviour, functional imaging and EM.


Fig. 2: Co-selective E-to-I connectivity.


Fig. 3: Anti-selective I-to-E connectivity.


Fig. 4: Opponent inhibition connectivity motif enhances trial-type signal encoding.
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                Data availability

              
              Directions for accessing the EM dataset, reconstructed neurons and calcium imaging data are available at GitHub (https://github.com/htem/PPC_inhibitoryMotifs).

            

Code availability

              
              Software and analysis code is available at Zenodo (https://zenodo.org/doi/10.5281/zenodo.10310186)75. Code used to perform all information-theoretic analyses was published previously66 and is available online (https://doi.org/10.1186/1471-2202-10-81). Code for the network model analyses is available at Zenodo (https://doi.org/10.5281/zenodo.10200999)76.

            

Change history
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In the version of this article initially published, the third software package listed in the Reporting Summary did not match the version listed in the Methods and has now been updated.
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Extended data figures and tables

Extended Data Fig. 1 Trial-type selectivity analysis and image co-registration.
(a) Performance on the navigational two-alternative forced-choice memory task plotted over different daily sessions. Functional data from the last 4 sessions (â€œlateâ€�), which were closest in time to when the brain was preserved for EM, were used for all analyses with the exception of those investigating how structure-function relationships evolve over time (Extended Data Fig. 5j, k, Extended Data Fig. 6d), which also include â€œearlyâ€� and â€œmiddleâ€� sessions. Early, middle, and late sessions were all after the initial training of the animal and comprise expert level task performance. (b) Approximate location of cranial window and calcium imaging ROI relative to cortical regions (adapted from the Allen Mouse Brain Common Coordinate Framework77). Although this figure depicts the right hemisphere, the experimental data was collected from the left hemisphere. (c) Calcium imaging ROI: 4 500â€‰Âµm x 500â€‰Âµm planes in layer 2/3 (separated by 25â€‰Âµm in z) were imaged at 5.3â€‰Hz volume rate. (d) Diagram indicating temporal epochs of trial. Different trials were synchronized to temporal landmarks (trial start, cue off, trial end) and 5 temporal trial epochs (cue early, cue late, delay, turn, inter-trial interval (ITI)) were defined relative to those landmarks (Methods). Each epoch lasts 2.2-2.4â€‰s. (e) Trial-averaged activity for left (blue) and right (red) trials for several example neurons. Neurons typically have some non-zero activity away from the temporal peak on preferred trial type. (f) Proportion of time points with significant selectivity that share the same trial-type preference as the max selectivity, showing that the left-right direction of max selectivity is generally representative of selectivity throughout the trial, especially for strongly selective neurons (n = 134 neurons active in the last 4 sessions). (g) Max selectivity for functionally characterized neurons contained within the EM volume (nâ€‰=â€‰134 neurons active in the last 4 sessions). (h) Cumulative histograms of mutual information with trial type, demonstrating that it was not statistically different between inhibitory (purple solid line) and excitatory (green solid line) neurons (n = 124 excitatory, 16 inhibitory neurons,Â pâ€‰=â€‰0.20, K-S test). Shading indicates 95% confidence intervals generated via bootstrap. (i) Corresponding slices from co-registered two-photon calcium imaging (2p, top) and EM (bottom) datasets. Cyan arrows â€“ blood vessels used as landmarks. (j) Example cellular ROIs (green) co-registered to calcium imaging (top) and EM data (bottom).


Extended Data Fig. 2 Trial-averaged neuron activity.
Each row shows trial-averaged activity of a functionally-characterized neuron. Row labels are neuron IDs corresponding to the CATMAID EM database, Extended Data Figs. 3 and 4, and Supplementary Tables 1 and 2. Left and right columns show activity on left and right trials, respectively. Temporal epochs shown correspond to Extended Data Fig. 1d. Activity was averaged over the last 4 behavioural sessions, then normalized by the maximum activity rate over both trial types for each neuron separately. Neurons were sorted first by selectivity (indicated by coloured bars on theÂ y-axis: left (max selectivityâ€‰<â€‰âˆ’0.05) â€“ blue, right (max selectivity > 0.05) â€“ red, non-selective (âˆ’0.05 â‰¤ max selectivity â‰¤ 0.05) â€“ grey), then by timepoint of maximum mutual information with trial type (early to late).


Extended Data Fig. 3 Excitatory Neuron Morphologies.
Traced neuron morphologies are shown for functionally-characterized excitatory pyramidal neurons in theÂ PPC. Axon â€“ blue, dendrites â€“ orange. Labels are neuron IDs corresponding to the CATMAID database and Supplementary Tables 1 and 2. Scale bars: 50 Î¼m.


Extended Data Fig. 4 Inhibitory Neuron Morphologies.
Traced neuron morphologies are shown for functionally-characterized inhibitory neurons in theÂ PPC. Axon â€“ blue, dendrites â€“ orange. Labels are neuron IDs corresponding to the CATMAID database and Supplementary Tables 1 and 2. Scale bars: 50 Î¼m.


Extended Data Fig. 5 Co-selective Excitatory-to-Inhibitory Connectivity and Simultaneous-Selectivity Analysis.
(a) Number of synapses plotted as a function of axon/dendrite overlap for E-to-I neuron pairs, including both connected and non-connected pairs. Co-selective pairs (green) generally have more synapses per overlap than anti-selective (purple). Dotted lines indicate linear fits. (b) Normalized synapse frequency for E-to-I connections including non-connected pairs, calculated by pooling all co- or anti-selective pairs together (Methods). Co-selective pairs have higher normalized synapse frequency than anti-selective pairs (anti: 0.0315â€‰Â±â€‰0.001 Î¼mâˆ’1, nâ€‰=â€‰21 pairs, co: 0.0157â€‰Â±â€‰0.001 Î¼mâˆ’1, nâ€‰=â€‰21, pâ€‰<â€‰0.001, bootstrap test). Violin plots show distributions generated via bootstrap. (c) Maximum-selectivity similarity as a function of the maximum selectivity of the two neurons. Co-selective neuron pairs have positive (green) and anti-selective pairs have negative values (purple). (d) Correlation coefficient between normalized synapse frequency and selectivity similarity for E-to-I connections in PPC (as in Fig. 2h), calculated using different distance thresholds for determining axon/dendrite overlap (see Fig. 2b). Grey shading indicates correlations expected by chance (95% confidence interval of random shuffles). The correlation is significant over a broad range of values (~2â€“18) Î¼m, and is maximized for thresholds close to value used (5 Î¼m, dotted line). (e) Top: instantaneous selectivity for example right- (red) and left-selective (blue) neurons. Arrows indicate maximum selectivity for each neuron. Bottom: simultaneous-selectivity similarity quantifies the selectivity similarity between neurons at the same time point. Arrow indicates the maximum absolute value, which is used for x-axis values in (f) and (g). (f) Simultaneous-selectivity similarity is correlated to normalized synapse frequency (nâ€‰=â€‰21 pairs, râ€‰=â€‰0.58, pâ€‰=â€‰0.006, Pearson correlation test). (g) Simultaneous-selectivity similarity is correlated to synapse size (nâ€‰=â€‰29 synapses, râ€‰=â€‰0.50, pâ€‰=â€‰0.006, Pearson correlation test). (h) Number of neurons that change maximum selectivity from left to right or vice versa (â€œswitchâ€�), or keep the same right-left selectivity (â€œstayâ€�), between early (8â€“10 days before sacrifice) and late (0â€“3 days before) sessions. Grey region indicates expected range if neurons switch at chance levels. (i) Number of neuron pairs that change maximum-selectivity similarity from co- to anti-selective or vice versa (â€œswitchâ€�), or keep the same similarity (â€œstayâ€�) between early and late sessions. Grey region indicates expected range if neurons switch at chance levels. (j) Correlations between normalized synapse frequency and maximum-selectivity similarity for E-to-I connections, calculated using functional data from early (8â€“10 days before sacrifice), middle (4â€“7 days before), and late sessions (0â€“3 days before). Correlation coefficients are lower for earlier sessions (early: râ€‰=â€‰0.31, pâ€‰=â€‰0.27, middle: râ€‰=â€‰0.53, pâ€‰=â€‰0.019, late: râ€‰=â€‰0.66, pâ€‰=â€‰0.001, Pearson correlation tests). (k) Correlations between PSD area and maximum-selectivity similarity for E-to-I synapses, calculated for early, middle, and late sessions. Correlation coefficients are lower for earlier sessions (early: râ€‰=â€‰0.19, pâ€‰=â€‰0.42, middle: râ€‰=â€‰0.46, pâ€‰=â€‰0.023, late: râ€‰=â€‰0.56, pâ€‰=â€‰0.002, Pearson correlation tests). All statistics reported as meanâ€‰Â±â€‰standard error with two-tailed significance tests.


Extended Data Fig. 6 Anti-selective Inhibitory-to-Excitatory Connectivity and Structure-function AnalysisÂ Across Connection Types.
(a) Number of synapses plotted as a function of axon/dendrite overlap for I-to-E neuron pairs, including both connected and non-connected pairs. Anti-selective pairs (purple) generally have more synapses per overlap than co-selective pairs (green). Dotted lines indicate linear fits. (b) Normalized synapse frequency for I-to-E connections including non-connected neuron pairs, calculated by pooling co- or anti-selective pairs together (Methods). Anti-selective pairs have higher normalized synapse frequency than co-selective pairs (anti: 0.0109 Â± 0.0004 Âµmâˆ’1, nâ€‰=â€‰99 pairs, co: 0.0096â€‰Â±â€‰0.0003â€‰Âµmâˆ’1, nâ€‰=â€‰112, pâ€‰=â€‰0.03, bootstrap test). Violin plots show distributions generated via bootstrap. (c) Correlation coefficient between normalized synapse frequency and maximum-selectivity similarity for I-to-E connections (as in Fig. 3c, calculated using different distance thresholds for determining axon/dendrite overlap (see Fig. 2b). Grey shading indicates correlations expected by chance (95% confidence interval of random shuffles). The correlation is significant over a range of values (~3â€“15 Î¼m), and is maximized for distances thresholds close to value used (5 Î¼m, dotted line). (d) Normalized synapse frequency plotted as a function of maximum-selectivity similarity for I-to-E connections in PPC, calculated using functional data from early (8â€“10 days before sacrifice), middle (4â€“7 days before), and late (0â€“3 days before) sessions. Correlation coefficients are less negative for earlier sessions (early: râ€‰=â€‰âˆ’0.06, pâ€‰=â€‰0.52; middle: râ€‰=â€‰âˆ’0.05, pâ€‰=â€‰0.64; late: râ€‰=â€‰âˆ’0.22, pâ€‰=â€‰0.021, Pearson correlation test). (e) Simultaneous-selectivity similarity is negatively correlated to normalized synapse frequency (râ€‰=â€‰âˆ’0.20, pâ€‰=â€‰0.041, Pearson correlation test). (fâ€“m): Structure-function correlations for all connection types in PPC. For each panel, the scatterplot on the left side shows the correlation between maximum-selectivity similarity and normalized synapse frequency (top row) or synapse size (bottom row). Different connection types are shown in each column (from left to right: E-to-E, E-to-I, I-to-E, I-to-I). Red line indicates linear fit. (f) E-to-E synapse frequency: nâ€‰=â€‰14, câ€‰=â€‰âˆ’0.40, pâ€‰=â€‰0.15. (g) E-to-I synapse frequency: nâ€‰=â€‰21, câ€‰=â€‰0.65, pâ€‰=â€‰0.001. (h) I-to-E synapse frequency: nâ€‰=â€‰103, câ€‰=â€‰âˆ’0.22, pâ€‰=â€‰0.023. (i) I-to-I synapse frequency: nâ€‰=â€‰10, câ€‰=â€‰âˆ’0.37, pâ€‰=â€‰0.30. (j) E-to-E synapse size: nâ€‰=â€‰14, câ€‰=â€‰0.20, pâ€‰=â€‰0.50. (k) E-to-I synapse size: nâ€‰=â€‰29, câ€‰=â€‰0.56, pâ€‰=â€‰0.002. (l) I-to-E synapse size: nâ€‰=â€‰156, câ€‰=â€‰0.084, pâ€‰=â€‰0.29. (m) I-to-I synapse size: nâ€‰=â€‰14, câ€‰=â€‰0.092, pâ€‰=â€‰0.75. All p-values are from two-tailed significance tests.


Extended Data Fig. 7 Connections Between Cells with Activity Peaks in Different Epochs and Noise Correlations.
(a) Example activity of connected neurons that have activity peaks during the same or different epochs. Top row indicates presynaptic excitatory neuron, bottom row indicates postsynaptic inhibitory neuron. Trial-averaged activity for right (red) and left (blue) trials are plotted for each neuron. Temporal epochs are indicated by colours as in Extended Data Fig. 1d. (b) Proportion of connected (left) and non-connected (right) E-to-I pairs that have activity peaks in the same (blue) or different (orange) temporal epochs. (c) Proportion of connected (left) and non-connected (right) I-to-E pairs that have activity peaks in the same (blue) or different (orange) temporal epochs. (d) Noise correlations were positively correlated to normalized synapse frequency for E-to-I connections (nâ€‰=â€‰19 connections, râ€‰=â€‰0.45, pâ€‰=â€‰0.026, one-tailed Pearson correlation test). (e) Noise correlations were negatively correlated to normalized synapse frequency for I-to-E connections (nâ€‰=â€‰84, râ€‰=â€‰âˆ’0.26, pâ€‰=â€‰0.009, one-tailed Pearson correlation test).


Extended Data Fig. 8 Decision-making circuit dynamics in the linear rate model.
(a) Cartoon illustrating the distance between mean responses to left and right trial types (coloured dots) in the state-space of the excitatory neuron activity. This distance is enhanced by opponent inhibition between trial-type selective subnetworks. On left trial-types, both suppression of ER and amplification of EL (grey arrows) contribute to increased separation along the signal axis (and symmetrically for right trials), thus enhancing the encoding of trial-type in presence of readout noise. (b) Values of the steady-state activity of EL (top) and ER (bottom) units as a function of the I-to-E (x-axis) and E-to-I (line colours) connection selectivity. (c) Normalized distance between the mean activity corresponding to left and right trial-types (see panel (a)), as a function of I-to-E and E-to-I connection selectivity. (d) Decoding accuracy computed by linearly decoding the trial-type from the excitatory units in presence of readout noise, as a function of the E-to-I and I-to-E connection selectivity. The region with anti-selective I-to-E selectivity (purple arrow and box) corresponds to networks with opponent inhibition, andÂ the black square denotes the parameter values used in simulations of Fig. 4b. The grey area corresponds to unstable network dynamics. (e) Decoding accuracy as a function of E-to-I (top) and I-to-E (bottom) selectivity, corresponding to two cuts of the phase plot (dashed lines in panel (d)). In panels (d) and (e), purple and green arrows indicate the directions where connection motifs increase respectively their anti- and co-selectivity (see Fig. 4a). (f) Dependence of the relative trial-type decoding accuracy (see Fig. 4c) as a function of the selectivity of the four connection types. Each subplot shows the dependence on E-to-I and I-to-E selectivity (as in Fig. 4c); different subplots correspond to different values of the E-to-E and I-to-I connection selectivity. The subplot highlighted by a magenta box corresponds to the one shown in Fig. 4c. In the linear rate model (Fig. 4aâ€“d), the region corresponding to selective E-to-I and anti-selective I-to-E (left quadrant) becomes linearly unstable when the E-to-E and I-to-I selectivity (Î”EE and Î”II) satisfy \({(1-\Delta }_{{EE}}){(1+\Delta }_{{II}}) < 0\). (gâ€“h) Absolute and relative trial-type decoding accuracy for time-dependent input noise, i.e. input noise that varies in time. Here the noise affects only the excitatory units, which are also the units that receive external trial-specific input. (iâ€“j) Same as (g-h) for time-independent input noise, i.e. noise that affects the external input on the excitatory units on a single-trial basis, but is otherwise constant in time.


Extended Data Fig. 9 Decision-making circuit dynamics in models receiving external input onto both excitatory and inhibitory units.
(a) Decoding accuracy of theÂ linear rate model, computed by linearly decoding the trial-type from the excitatory units in presence of readout noise, as a function of the E-to-I and I-to-E connection selectivity. The upper left quadrant corresponds to networks with opponent inhibition. The grey area corresponds to unstable network dynamics. (b) Relative decoding accuracy of linear rate model, defined as the ratio of output to input decoding accuracy, as a function of E-to-I and I-to-E selectivity. Compared to the corresponding model with external inputs only onto E units (Fig. 4c), this model shows a larger improvement in decoding accuracy from opponent inhibition (higher relative decoding accuracy when opponent inhibition is present, and lower relative decoding accuracy when opponent inhibition is absent). (c) Correlation coefficient between connection strengths and max-selectivity similarity across trained RNNs (nâ€‰=â€‰164). The majority of networks exhibit opponent inhibition. Compared to RNNs trained with external inputs only onto E neurons (Fig. 4h), I-to-E connections are more anti-selective, whereas E-to-I connections are less co-selective. (d) Distance between left and right RNN activity (averaged across time) as a function of selectivity perturbations, normalized by its value in the unperturbed network (dashed lines). E-to-I (top) and I-to-E (bottom) connection weights were perturbed in a way that changes anti- (purple arrow) or co-selectivity (green arrows) without changing the average connection weight. Solid lines represent the median across networks, error bars correspond to the 25th and 75th percentile across networks (nâ€‰=â€‰164). Stronger opponent inhibition (stronger E-to-I co-selectivity or I-to-E anti-selectivity) amplified the separation between left and right population responses, similar to the effect of perturbations on RNNs with external inputs on E units only (Fig. 4i).


Extended Data Fig. 10 Functional role of connections between neurons with activity peaks in the same or different task epochs for sequential, trial-type selective population dynamics in the recurrent neural networks.
(a) Correlation coefficient between connection strengths and maximum-selectivity similarity across trained RNNs (as in Fig. 4h). Opponent inhibition motif (co-selective E-to-I and anti-selective I-to-E connections) is observed when separately considering connections between neurons with activity peaks in the same temporal epoch within the trial (i.e. â€˜same-epochâ€™ connections; blue distributions, â€˜sameâ€™) and connections between neurons peaking at different temporal epochs (i.e. â€˜different-epochâ€™ connections; red distributions, â€˜diffâ€™). (b) Distance between left- and right RNN activity (averaged across time) as a function of selectivity perturbations of â€˜same-epochâ€™ and â€˜different-epochâ€™ connections separately, normalized by its value in the unperturbed networks (dashed lines). E-to-I (left) and I-to-E (right) connection weights were perturbed in a way that altered connection selectivity without changing the average connection weight. For each connection type (E-to-I or I-to-E) perturbations were induced separately on the â€˜same-epochâ€™ and â€˜diff-epochâ€™ connections. Solid lines represent the median across networks, error bars correspond to the 25th and 75th percentile across networks (as in Fig. 4i). (c) Contributions from off-peak neural activity to the distance between left and right RNN activity (averaged across time) as a function of â€˜different-epochâ€™ E-to-I (left) and I-to-E (right) selectivity perturbations, normalized by its value in the unperturbed network (dashed lines; as in Fig. 4i). Solid lines represent the median across networks, error bars correspond to the 25th and 75th percentile across networks (nâ€‰=â€‰147, randomly initiated artificial neural networks). The contribution from off-peak activity to the distance was computed as follows. Prior to averaging the distance over time points, at each time point the distance was computed by selecting only neurons that were not at their activity peaks at that specific time point. (d) Same as (c) for the contribution of peak activity to the distance between trial-type selective population activity. Prior to averaging the distance over time points, at each time point the distance was computed by selecting only neurons that were at their activity peaks at that specific time point. (e) Total excitatory (left) and inhibitory (right) currents received by postsynaptic excitatory neurons through â€˜same-epochâ€™ (blue) and â€˜different-epochâ€™ connections (red), centred around the peak time of the postsynaptic neuronsâ€™ activity averaged over preferred and non-preferred trial types. Currents are computed as the mean across trained RNNs of single-cell currents, summed over presynaptic neurons and averaged over postsynaptic neurons and over preferred and non-preferred trial types. (f) Values of the sequentiality index of neural responses across all fit RNNs (grey), RNNs with reduced strength of â€˜same-epochâ€™ (blue) and â€˜different-epochâ€™ (red) connections. The sequentiality index was defined as the Spearman (rank) correlation between the order of activity peak times across neurons in PPC data and the fit RNN responses (seeÂ Supplementary Methods Section â€œAnalysis of the function of â€˜same-epochâ€™ and â€˜different-epochâ€™ RNN connectivityâ€�). (g) Median excitatory activity across RNNs subject to different types of connection perturbations. Left: all fit RNNs (without perturbations); centre left and centre right: RNNs with reduced strength of â€˜same-epochâ€™ or â€˜different-epochâ€™ connections respectively; right: RNNs with â€˜different-epochâ€™ connections entirely removed prior to training (only â€˜sameâ€™ connections are trained). (h) Peak activity values averaged across neurons and stimuli across all fit RNNs (grey), RNNs with reduced strength of â€˜same-epochâ€™ (blue) and â€˜different-epochâ€™ (red) connections (as in panel g). (i-m) Same as (h) for the off-peak activity, ratio of peak to off-peak activity, trial-type selectivity of the peak and off-peak activity and overall selectivity (seeÂ Supplementary Methods Section â€œAnalysis of epoch-specific RNN connectivityâ€�). In panels (h-m) and the selectivity was defined as the normalized difference between left/right trial- and time-averaged activity (i.e. \({({\boldsymbol{r}}}_{{\boldsymbol{L}}}{\boldsymbol{-}}{{\boldsymbol{r}}}_{{\boldsymbol{R}}})/{({\boldsymbol{r}}}_{{\boldsymbol{R}}}+{{\boldsymbol{r}}}_{{\boldsymbol{L}}})\) or \({({\boldsymbol{r}}}_{{\boldsymbol{R}}}{\boldsymbol{-}}{{\boldsymbol{r}}}_{{\boldsymbol{L}}})/{({\boldsymbol{r}}}_{{\boldsymbol{R}}}+{{\boldsymbol{r}}}_{{\boldsymbol{L}}})\) respectively for left and right neurons) and was averaged across all neurons belonging to each left/right selective sub-population comprising both excitatory and inhibitory neurons, then averaged over left and right sub-populations. In all panels, the peak activity was defined as the activity at times ranging from âˆ’10 to +10 time bins around the time at which the activity averaged across left and right trial types was maximum. In all panels the results are shown across (nâ€‰=â€‰147) RNNs.


Extended Data Fig. 11 Error-Trial Selectivity Degradation in PPC activity and in models.
(a) Average activity (experimental calcium imaging data) in correct and error trials for example excitatory (top row) and inhibitory neurons (bottom row). In each plot, neuronal activity is plotted as a function of time. Trials are grouped based on whether the white (left column) or black cue (right column) was presented and coloured based on which direction the mouse turned. Arrows indicate activity changes on error trials that degrade selectivity: activity is generally decreased in preferred cue trials (Î”pref, i.e. white/black for left/right â€“ selective neurons) and increased on non-preferred cue trials (Î”non, i.e. black/white for left/right â€“ selective neurons). (b) Error-trial selectivity degradation (Î”pref +Î”non, see (a)), which quantifies how much selective activity is degraded on error versus correct trials (Methods), for E and I neurons. Each datapoint indicates one neuron. At the population level, both E and I neurons both had positive degradation (E: 0.74â€‰Â±â€‰[âˆ’0.52, 0.80], pâ€‰<â€‰0.001; I: 0.52â€‰Â±â€‰[âˆ’0.28,âˆ’0.79], pâ€‰=â€‰0.002, Wilcoxon signed-rank tests), and there was no significant difference between E and I (pâ€‰=â€‰0.99, Mann-Whitney U-test). (c) Median error trial selectivity degradation for E and I neurons in the EM mouse (same as (b), nâ€‰=â€‰1 mouse, 120 E neurons, 16 I neurons, 11 sessions, 95â€“1354 trials per neuron), additional mice (nâ€‰=â€‰3, 824 E neurons, 96 I neurons, 1-2 sessions, 149â€“395 trials per neuron), and the linear rate model. Error bars show 95% confidence interval of the median. For experimental animals, both E and I neurons exhibited significant error trial selectivity degradation (EM mouse: E: 0.82, I: 0.72, additional mice: E: 0.38, I: 0.48, pâ€‰<â€‰0.001 for all cases, permutation tests), and the there was no significant difference between E and I neurons (EM mouse: pâ€‰=â€‰0.45, additional mice; pâ€‰=â€‰0.31, permutation tests). The model shows qualitatively similar results (E: 1.12, I: 1.07). (d) Example imaging plane from an additional mouse showing labelling strategy to distinguish excitatory and inhibitory neurons. In addition to the green calcium indicator, inhibitory neurons were labelled with a nuclear-localized red fluorophore (magenta arrows) and excitatory neurons were labelled with a somatic membrane-localized red fluorophore. To identify neurons with enriched nuclear red fluorescence, we computed the ratio of nuclear to membrane fluorescence. Insets show average images of cells deemed excitatory (top right) and inhibitory (bottom right). Scale bars: Left: 50 Î¼m, Right: 10 Î¼m. (e) Error-trial selectivity degradation as a function of E-to-I (y-axis) and I-to-E (x-axis) selectivity for the linear rate model. Values for E and I units are both positive and similar in magnitude (ratio â‰ˆ 1) only in networks exhibiting opponent inhibition (E-to-I selectivity > 0 and I-to-E selectivity <0). Grey square marker indicates the selectivity values corresponding to the bars in (c). Statistics reported as meanâ€‰Â±â€‰standard error with two-tailed significance tests.


Extended Data Fig. 12 Tests of methods for estimation of noise correlations and information.
(a,b) Illustration of the distributions of firing activity of two neurons of fixed trial type across multiple trials for two simulated example sessions. The correlation value is different across the two sessions (heterogeneity across sessions). (c) Distributions of the firing activity of the two neurons pooled across sessions 1 and 2 (pooled distributions). In presence of heterogeneity of correlation values across sessions 1 and 2, the correlation value computed from the pooled distribution is equal to the value averaged across session 1 and 2. (d,e) Illustration of the distributions of the firing activity of a neuron across multiple trials for two trial types in two example sessions. The trial-type information value of the neuron is different across the two sessions (heterogeneity across sessions), as a result of changes in the trial-type-specific mean firing and firing variance across trial types. (f) Distributions of firing activity of the neuron across the two trial types pooled across sessions 1 and 2 (pooled distributions). Because of the heterogeneity in the neuronâ€™s firing parameters across sessions 1 and 2, the trial-type information of the pooled distribution is less than the average information on session 1 and 2. (g) Average correlation and RMSE of correlation computed without regressing out behaviour (grey) and regressing out behaviour (black). (h) Average correlation and RMSE of correlation computed using the average value across sessions (black) or pooling data across sessions (red) when no heterogeneity across sessions is present. (i) Same as (h) when realistic heterogeneity across sessions is present. (j) Average trial-type information and RMSE of trial-type information computed without using a bias correction (grey) and using the Panzeri-Treves (PT) bias correction (black). (k) Average trial-type information and RMSE of information computed using the average value across sessions (black) or pooling data across sessions (red) when no heterogeneity across sessions is present. (l) Same as (k) when realistic heterogeneity across sessions is present. In all panels, left and right plots respectively show the average value and the root mean squared error (RMSE) computed across 5000 simulations of the correlation (g-i) or information (j-l) values.
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